cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A375021 Expansion of 1/sqrt(1 - 2*x + 3*x^2 + 2*x^3 + x^4).

Original entry on oeis.org

1, 1, 0, -3, -7, -6, 11, 49, 78, 3, -297, -750, -691, 1271, 5970, 9877, 647, -38640, -100381, -95689, 170394, 827453, 1398933, 131418, -5472241, -14495327, -14186826, 24241947, 121177521, 208360152, 25541493, -807963639, -2175698844, -2179521039
Offset: 0

Views

Author

Seiichi Manyama, Aug 09 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(1/sqrt(1-2*x+3*x^2+2*x^3+x^4))
    
  • PARI
    a(n) = sum(k=0, n\2, (-1)^k*binomial(n-k, k)^2);

Formula

n * a(n) = (2*n-1)*a(n-1) - 3*(n-1)*a(n-2) - (2*n-3)*a(n-3) - (n-2)*a(n-4).
a(n) = Sum_{k=0..floor(n/2)} (-1)^k * binomial(n-k,k)^2.

A387507 a(n) = Sum_{k=0..floor(n/3)} 2^k * binomial(n-2*k,k)^2.

Original entry on oeis.org

1, 1, 1, 3, 9, 19, 37, 87, 217, 507, 1157, 2727, 6553, 15627, 37077, 88519, 212569, 510715, 1226853, 2952615, 7120921, 17192427, 41538293, 100458759, 243211865, 589313755, 1428931333, 3467193191, 8418640793, 20453853003, 49722339861, 120936710471
Offset: 0

Views

Author

Seiichi Manyama, Aug 31 2025

Keywords

Crossrefs

Programs

  • Magma
    [(&+[2^k * Binomial(n-2*k, k)^2: k in [0..Floor(n/3)]]): n in [0..40]]; // Vincenzo Librandi, Sep 02 2025
  • Mathematica
    Table[Sum[2^k*Binomial[n-2*k, k]^2,{k,0,Floor[n/3]}],{n,0,40}] (* Vincenzo Librandi, Sep 02 2025 *)
  • PARI
    a(n) = sum(k=0, n\3, 2^k*binomial(n-2*k, k)^2);
    

Formula

G.f.: 1/sqrt((1-x-2*x^3)^2 - 8*x^4).

A387508 a(n) = Sum_{k=0..floor(n/4)} 2^k * binomial(n-3*k,k)^2.

Original entry on oeis.org

1, 1, 1, 1, 3, 9, 19, 33, 55, 109, 243, 529, 1071, 2093, 4179, 8673, 18255, 37981, 77923, 159649, 329935, 687117, 1432403, 2977505, 6179215, 12841597, 26757059, 55840033, 116551119, 243209325, 507658803, 1060551137, 2217515151, 4639042909, 9707403811
Offset: 0

Views

Author

Seiichi Manyama, Aug 31 2025

Keywords

Crossrefs

Programs

  • Magma
    [(&+[2^k * Binomial(n-3*k, k)^2: k in [0..Floor(n/4)]]): n in [0..40]]; // Vincenzo Librandi, Sep 02 2025
  • Mathematica
    Table[Sum[2^k*Binomial[n-3*k, k]^2,{k,0,Floor[n/4]}],{n,0,40}] (* Vincenzo Librandi, Sep 02 2025 *)
  • PARI
    a(n) = sum(k=0, n\4, 2^k*binomial(n-3*k, k)^2);
    

Formula

G.f.: 1/sqrt((1-x-2*x^4)^2 - 8*x^5).

A387515 a(n) = Sum_{k=0..floor(n/2)} 2^(n-2*k) * binomial(k,n-2*k)^2.

Original entry on oeis.org

1, 0, 1, 2, 1, 8, 5, 18, 37, 40, 145, 178, 417, 872, 1301, 3330, 5365, 11080, 22801, 39362, 86721, 157128, 312293, 631666, 1169541, 2416104, 4602961, 9061458, 18123553, 34717608, 69825013, 135902818, 267384405, 531611656, 1035512785, 2060791650, 4048647489, 7979180296
Offset: 0

Views

Author

Seiichi Manyama, Sep 01 2025

Keywords

Crossrefs

Programs

  • Magma
    [(&+[2^(n-2*k) * Binomial(k,n-2*k)^2: k in [0..Floor(n/2)]]): n in [0..40]]; // Vincenzo Librandi, Sep 01 2025
  • Mathematica
    Table[Sum[2^(n-2*k)*Binomial[k,n-2*k]^2,{k,0,Floor[n/2]}],{n,0,40}] (* Vincenzo Librandi, Sep 01 2025 *)
  • PARI
    a(n) = sum(k=0, n\2, 2^(n-2*k)*binomial(k, n-2*k)^2);
    

Formula

G.f.: 1/sqrt((1-x^2-2*x^3)^2 - 8*x^5).

A375273 Expansion of 1/(1 - 2*x - 3*x^2 - 4*x^3 + 4*x^4).

Original entry on oeis.org

1, 2, 7, 24, 73, 238, 763, 2436, 7821, 25050, 80255, 257200, 824081, 2640582, 8461187, 27111644, 86872853, 278363058, 891946503, 2858027016, 9157854361, 29344123550, 94026132235, 301283944500, 965391362461, 3093362593162, 9911930522767, 31760378496864
Offset: 0

Views

Author

Seiichi Manyama, Aug 09 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/(1-2*x-3*x^2-4*x^3+4*x^4))
    
  • PARI
    a(n) = sum(k=0, n\2, 2^k*binomial(2*n-2*k+2, 2*k+1))/2;

Formula

a(n) = 2*a(n-1) + 3*a(n-2) + 4*a(n-3) - 4*a(n-4).
a(n) = (1/2) * Sum_{k=0..floor(n/2)} 2^k * binomial(2*n-2*k+2,2*k+1).
Showing 1-5 of 5 results.