cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A108497 Triangle read by rows: T(n,k) = k^(n+1)-k mod n, showing 1<=k<=n.

Original entry on oeis.org

0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 2, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 6, 5, 6, 2, 0, 0, 6, 0, 4, 0, 2, 0, 0, 0, 5, 6, 0, 8, 3, 0, 2, 0, 0, 6, 4, 0, 0, 0, 6, 4, 0, 0, 0, 2, 6, 1, 9, 8, 9, 1, 6, 2, 0, 0, 6, 0, 0, 0, 6, 0, 0, 0, 6, 0, 0, 0, 2, 6, 12, 7, 4, 3, 4, 7, 12, 6, 2, 0, 0, 6, 10, 4, 8, 0, 0, 0, 6, 10, 4, 8
Offset: 1

Views

Author

Henry Bottomley, Jun 06 2005

Keywords

Examples

			Rows start: 0; 0,0; 0,2,0; 0,2,0,0; 0,2,1,2,0; 0,0,0,0,0,0; 0,2,6,5,6,2,0; etc.
T(7,3) = 3^(7+1)-3 mod 7 = 6558 mod 7 = 6.
		

Crossrefs

Formula

T(n, k+n)=T(n, k). T(n, 0)=T(n, 1)=T(n, n)=T(1, k)=T(2, k)=T(6, k)=T(42, k)=T(1806, k)=0.

A108495 a(n) = (n^7 - n)/6.

Original entry on oeis.org

0, 0, 21, 364, 2730, 13020, 46655, 137256, 349524, 797160, 1666665, 3247860, 5971966, 10458084, 17568915, 28476560, 44739240, 68389776, 102036669, 148978620, 213333330, 300181420, 415726311, 567470904, 764411900, 1017252600
Offset: 0

Views

Author

Henry Bottomley, Jun 06 2005

Keywords

Comments

Also integer sequences for (n^2-n)/1 (A002378 offset), (n^3-n)/2 (A027480 offset), (n^43-n)/42 (A108496) and (n^1807-n)/1806.

Examples

			a(2) = (2^7 - 2)/6 = 126/6 = 21.
		

Crossrefs

Programs

  • Magma
    [(n^7-n)/6: n in [0..40]]; // Vincenzo Librandi, May 02 2011
    
  • Mathematica
    Table[(n^7-n)/6,{n,0,30}] (* or *) LinearRecurrence[ {8,-28,56,-70,56,-28,8,-1},{0,0,21,364,2730,13020,46655,137256},30] (* Harvey P. Dale, Apr 16 2014 *)
  • Python
    [(n**7-n)//6 for n in range(41)] # David Radcliffe, Jun 06 2025

Formula

a(n) = (n-1)*A059721(n) = -A024004(n)*n/6.
G.f.: 7*x^2*(3 + 28*x + 58*x^2 + 28*x^3 + 3*x^4)/(1-x)^8. [Colin Barker, May 08 2012]
Showing 1-2 of 2 results.