cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A108499 Number of values of k (1<=k<=n) where k^(n+1) = k mod n, or equivalently where sum_i{1<=i<=n} k^i = 0 mod n.

Original entry on oeis.org

1, 2, 2, 3, 2, 6, 2, 5, 4, 6, 2, 9, 2, 6, 4, 9, 2, 14, 2, 15, 8, 6, 2, 15, 6, 6, 10, 9, 2, 18, 2, 17, 4, 6, 4, 21, 2, 6, 8, 25, 2, 42, 2, 9, 8, 6, 2, 27, 8, 22, 4, 15, 2, 38, 12, 15, 8, 6, 2, 45, 2, 6, 16, 33, 4, 18, 2, 15, 4, 18, 2, 35, 2, 6, 12, 9, 4, 42, 2, 45, 28, 6, 2, 63, 4, 6, 4, 15, 2, 42, 4
Offset: 1

Views

Author

Henry Bottomley, Jun 06 2005

Keywords

Examples

			a(2)=2 since 1^3 = 1 mod 2 and 2^3 = 8 = 0 mod 2 = 2 mod 2.
a(3)=2 since 1^1+1^2+1^3 = 3 = 0 mod 3 and 3^1+3^2+3^3 = 39 = 0 mod 3 but 2^1+2^2+2^3 = 14 = 2 mod 3 != 0 mod 3.
		

Crossrefs

Numbers of zeros in rows of A108497 or A108498.

Formula

a(n)=n-A108500(n). a(n)=n iff n is in A014117.

A108495 a(n) = (n^7 - n)/6.

Original entry on oeis.org

0, 0, 21, 364, 2730, 13020, 46655, 137256, 349524, 797160, 1666665, 3247860, 5971966, 10458084, 17568915, 28476560, 44739240, 68389776, 102036669, 148978620, 213333330, 300181420, 415726311, 567470904, 764411900, 1017252600
Offset: 0

Views

Author

Henry Bottomley, Jun 06 2005

Keywords

Comments

Also integer sequences for (n^2-n)/1 (A002378 offset), (n^3-n)/2 (A027480 offset), (n^43-n)/42 (A108496) and (n^1807-n)/1806.

Examples

			a(2) = (2^7 - 2)/6 = 126/6 = 21.
		

Crossrefs

Programs

  • Magma
    [(n^7-n)/6: n in [0..40]]; // Vincenzo Librandi, May 02 2011
    
  • Mathematica
    Table[(n^7-n)/6,{n,0,30}] (* or *) LinearRecurrence[ {8,-28,56,-70,56,-28,8,-1},{0,0,21,364,2730,13020,46655,137256},30] (* Harvey P. Dale, Apr 16 2014 *)
  • Python
    [(n**7-n)//6 for n in range(41)] # David Radcliffe, Jun 06 2025

Formula

a(n) = (n-1)*A059721(n) = -A024004(n)*n/6.
G.f.: 7*x^2*(3 + 28*x + 58*x^2 + 28*x^3 + 3*x^4)/(1-x)^8. [Colin Barker, May 08 2012]

A108496 a(n) = (n^43 - n)/42.

Original entry on oeis.org

0, 0, 209430786243, 7815642080822311372, 1842172677508006361457030, 27068294695622864223661876860, 68747114771196346634599779308105, 51995580380757061883555053636996008
Offset: 0

Views

Author

Henry Bottomley, Jun 06 2005

Keywords

Comments

Also integer sequences for (n^2-n)/1 (A002378 offset), (n^3-n)/2 (A027480 offset), (n^7-n)/6 (A108495) and (n^1807-n)/1806.

Examples

			a(2) = (2^43 - 2)/42 = 8796093022206/42 = 209430786243.
		

Crossrefs

Programs

Formula

a(n) = (n-1)*A108048(n).

A108498 Triangle read by rows: T(n,k) = sum_i{1<=i<=n} k^i mod n, showing 1<=k<=n.

Original entry on oeis.org

0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 2, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 4, 5, 6, 0, 0, 6, 0, 4, 0, 2, 0, 0, 0, 5, 3, 0, 2, 6, 0, 8, 0, 0, 6, 2, 0, 0, 0, 6, 2, 0, 0, 0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 0, 6, 0, 0, 0, 6, 0, 0, 0, 6, 0, 0, 0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 0, 0, 6, 12, 6, 2, 0, 0, 0, 6, 12, 6, 2
Offset: 1

Views

Author

Henry Bottomley, Jun 06 2005

Keywords

Examples

			Rows start: 0; 0,0; 0,2,0; 0,2,0,0; 0,2,3,4,0; 0,0,0,0,0,0; 0,2,3,4,5,6,0; etc.
T(7,3) = 3+9+27+81+243+729+2187 mod 7 = 3279 mod 7 = 3.
		

Crossrefs

Formula

T(n, k+n)=T(n, k). T(n, 0)=T(n, 1)=T(n, n)=T(1, k)=T(2, k)=T(6, k)=T(42, k)=T(1806, k)=0. T(p, k)=k for p prime and 1

A108500 Number of values of k (1<=k<=n) where k^(n+1) != k mod n, or equivalently where sum_i{1<=i<=n} k^i != 0 mod n.

Original entry on oeis.org

0, 0, 1, 1, 3, 0, 5, 3, 5, 4, 9, 3, 11, 8, 11, 7, 15, 4, 17, 5, 13, 16, 21, 9, 19, 20, 17, 19, 27, 12, 29, 15, 29, 28, 31, 15, 35, 32, 31, 15, 39, 0, 41, 35, 37, 40, 45, 21, 41, 28, 47, 37, 51, 16, 43, 41, 49, 52, 57, 15, 59, 56, 47, 31, 61, 48, 65, 53, 65, 52, 69, 37, 71, 68, 63, 67
Offset: 1

Author

Henry Bottomley, Jun 06 2005

Keywords

Examples

			a(2)=0 since 1^3 = 1 mod 2 and 2^3 = 8 = 0 mod 2 = 2 mod 2.
a(3)=1 since 2^1+2^2+2^3 = 14 = 2 mod 3 != 0 mod 3 but 1^1+1^2+1^3 = 3 = 0 mod 3 and 3^1+3^2+3^3 = 39 = 0 mod 3.
		

Crossrefs

Numbers of nonzeros in rows of A108497 or A108498.

Formula

a(n)=n-A108499(n). a(n)=0 iff n is in A014117. a(p)=p-2 for p prime.
Showing 1-5 of 5 results.