cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A108531 Number of mobiles (cycle rooted trees) with n nodes and 2-colored internal (non-leaf) nodes.

Original entry on oeis.org

1, 2, 6, 18, 60, 206, 770, 2950, 11748, 47746, 197808, 830878, 3532790, 15168294, 65683552, 286504378, 1257693038, 5551978426, 24630911086, 109759215338, 491060888588, 2204938828766, 9933016712348, 44881199711338
Offset: 1

Views

Author

Christian G. Bower, Jun 07 2005

Keywords

Crossrefs

Programs

  • PARI
    CIK(p,n)={sum(d=1, n, eulerphi(d)/d*log(subst(1/(1+O(x*x^(n\d))-p), x, x^d)))}
    seq(n)={my(p=O(1));for(i=1, n, p=1+2*CIK(x*p, i)); Vec(p)} \\ Andrew Howroyd, Jun 20 2018

Formula

Shifts left and halves under CIK transform.

A108530 Number of rooted identity trees with n internal (non-leaf) nodes.

Original entry on oeis.org

1, 1, 2, 4, 12, 34, 110, 364, 1248, 4356, 15520, 56022, 204726, 755472, 2812004, 10543718, 39791070, 151022006, 576090250, 2207493080, 8493196536, 32797115398, 127071214442, 493831241234, 1924504466246, 7519182311366, 29447430754182, 115577336981932
Offset: 0

Views

Author

Christian G. Bower, Jun 07 2005

Keywords

Comments

Also for n>0, rooted trees with n nodes and 2-colored internal nodes. Black nodes correspond to nodes with a leaf child; white nodes correspond to those without one.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(a(i$2), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> `if`(n<2, 1, 2*b(n-1,n-1)):
    seq(a(n), n=0..30);  # Alois P. Heinz, May 20 2013
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[Binomial[a[i], j]*b[n - i*j, i-1], {j, 0, n/i}]]];
    a[n_] := If[n<2, 1, 2*b[n-1, n-1]];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 01 2016, after Alois P. Heinz *)

Formula

Shifts left and halves under WEIGH transform.
a(n) ~ c * d^n / n^(3/2), where d = 4.1516890102085520777311008746639624... and c = 0.3329810927479684511418598248... - Vaclav Kotesovec, Feb 28 2014
Showing 1-2 of 2 results.