cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A052716 Expansion of e.g.f. (x + 1 - sqrt(1-6*x+x^2))/2.

Original entry on oeis.org

0, 2, 4, 36, 528, 10800, 283680, 9102240, 345058560, 15090727680, 747888422400, 41422381862400, 2535569103513600, 169983582318950400, 12386182292118835200, 974723523832041984000, 82385641026424479744000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

With a(n)=1, also number of labeled mobiles with n nodes and 2-colored internal (non-leaf) nodes - Christian G. Bower, Jun 07 2005

Crossrefs

Programs

  • Magma
    [n le 1 select 1-(-1)^n else Factorial(n)*(&+[Catalan(k)*Binomial(n+k-1, n-k-1): k in [0..n-1]]): n in [0..30]]; // G. C. Greubel, May 28 2022
    
  • Maple
    spec := [S,{C=Union(B,Z),B=Prod(S,C),S=Union(Z,C)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    With[{nn=20},CoefficientList[Series[(x+1-Sqrt[1-6x+x^2])/2,{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Apr 19 2020 *)
  • SageMath
    [bool(n==1)+factorial(n)*sum(binomial(n+k-1, n-k-1)*catalan_number(k) for k in (0..n-1)) for n in (0..30)] # G. C. Greubel, May 28 2022

Formula

D-finite with recurrence: a(2)=4, a(1)=2, (n^2-1)*a(n) = (3+6*n)*a(n+1) - a(n+2).
a(n) = n!*A006318(n-1), n>=2. - R. J. Mathar, Oct 26 2013

A108530 Number of rooted identity trees with n internal (non-leaf) nodes.

Original entry on oeis.org

1, 1, 2, 4, 12, 34, 110, 364, 1248, 4356, 15520, 56022, 204726, 755472, 2812004, 10543718, 39791070, 151022006, 576090250, 2207493080, 8493196536, 32797115398, 127071214442, 493831241234, 1924504466246, 7519182311366, 29447430754182, 115577336981932
Offset: 0

Views

Author

Christian G. Bower, Jun 07 2005

Keywords

Comments

Also for n>0, rooted trees with n nodes and 2-colored internal nodes. Black nodes correspond to nodes with a leaf child; white nodes correspond to those without one.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(a(i$2), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> `if`(n<2, 1, 2*b(n-1,n-1)):
    seq(a(n), n=0..30);  # Alois P. Heinz, May 20 2013
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[Binomial[a[i], j]*b[n - i*j, i-1], {j, 0, n/i}]]];
    a[n_] := If[n<2, 1, 2*b[n-1, n-1]];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 01 2016, after Alois P. Heinz *)

Formula

Shifts left and halves under WEIGH transform.
a(n) ~ c * d^n / n^(3/2), where d = 4.1516890102085520777311008746639624... and c = 0.3329810927479684511418598248... - Vaclav Kotesovec, Feb 28 2014

A108532 Number of asymmetric mobiles (cycle rooted trees) with n nodes and 2-colored internal (non-leaf) nodes.

Original entry on oeis.org

1, 2, 4, 12, 38, 136, 490, 1852, 7108, 27880, 110892, 447060, 1821252, 7489732, 31045350, 129587996, 544228664, 2298008824, 9750218012, 41548438040, 177740526076, 763046178960, 3286318131646, 14195239150556, 61481540391722
Offset: 1

Views

Author

Christian G. Bower, Jun 07 2005

Keywords

Crossrefs

Programs

  • PARI
    CHK(p,n)={sum(d=1, n, moebius(d)/d*log(subst(1/(1+O(x*x^(n\d))-p), x, x^d)))}
    seq(n)={my(p=O(1));for(i=1, n, p=1+2*CHK(x*p, i)); Vec(p)} \\ Andrew Howroyd, Jun 20 2018

Formula

Shifts left and halves under CHK transform.

A032202 Sequence (a(n): n >= 1) that shifts left 2 places under the "CIK" (necklace, indistinct, unlabeled) transform and satisfies a(1) = a(2) = 1.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 10, 22, 41, 92, 193, 435, 963, 2215, 5051, 11754, 27375, 64381, 151898, 360661, 859149, 2055804, 4934428, 11883930, 28699336, 69497354, 168691424, 410399073, 1000486306, 2443761830, 5979742904, 14656709518
Offset: 1

Views

Author

Keywords

Comments

From Petros Hadjicostas, Dec 30 2018: (Start)
a(n+2) = (1/n)*Sum_{d|n} phi(n/d)*c(d), where c(n) = n*a(n) + Sum_{s=1..n-1} c(s)*a(n-s) with a(1) = a(2) = 1, c(1) = 1, and c(2) = 3.
G.f.: If A(x) = Sum_{n>=1} a(n)*x^n, then Sum_{n>=1} a(n+2)*x^n = -Sum_{n>=1} (phi(n)/n)*log(1-A(x^n)).
The g.f. of the auxiliary sequence (c(n): n>=1) is C(x) = Sum_{n>=1} c(n)*x^n = x*(dA(x)/dx)/(1-A(x)) = x + 3*x^2 + 7*x^3 + 19*x^4 + 46*x^5 + 117*x^6 + 281*x^7 + 707*x^8 + 1717*x^9 + 4288*x^10 + 10583*x^11 + 26401*x^12 + ...
(End)
The first two terms of the sequence must be specified. In general, if the sequence (b(n): n >= 1) is such that (b(n+2): n >= 1) = CIK((b(n): n >= 1)), then b(3) = b(1), b(4) = (1/2)*(b(1)^2 + 2*b(2) + b(1)), b(5) = (b(1)/3)*(b(1)^2 + 3*b(2) + 5), and so on. - Petros Hadjicostas, Jan 01 2019

Crossrefs

Programs

  • Mathematica
    m = 33; a[1] = a[2] = 1; A[_] = 0;
    Do[A[x_] = x(a[1] + x a[2] - x Sum[EulerPhi[n] Log[1-A[x^n]]/n, {n, 1, m}]) + O[x]^m // Normal, {m}];
    CoefficientList[A[x], x] // Rest (* Jean-François Alcover, Sep 17 2019 *)
  • PARI
    CIK(p,n)={sum(d=1, n, eulerphi(d)/d*log(subst(1/(1+O(x*x^(n\d))-p), x, x^d)))}
    seq(n)={my(p=1+O(x));for(i=1, n\2, p=1+x+x*CIK(x*p, 2*i)); Vec(p+O(x^n))} \\ Andrew Howroyd, Jun 20 2018

Extensions

Name modified by Petros Hadjicostas, Jan 01 2019
Showing 1-4 of 4 results.