cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108563 Number of representations of n as sum of twice a square plus thrice a square.

Original entry on oeis.org

1, 0, 2, 2, 0, 4, 0, 0, 2, 0, 0, 4, 2, 0, 4, 0, 0, 0, 2, 0, 4, 4, 0, 0, 0, 0, 0, 2, 0, 4, 4, 0, 2, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 0, 0, 2, 0, 6, 0, 0, 4, 0, 0, 4, 0, 0, 4, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 0, 0, 2, 0, 0, 6, 0, 8, 0, 0, 4, 0, 0, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 6, 4, 0, 4
Offset: 0

Views

Author

Ralf Stephan, May 13 2007

Keywords

Comments

Number of solutions to n = 2*a^2 + 3*b^2 in integers.
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
a(n) > 0 if and only if n is in A002480. a(n) < 2 if n is in A002481. - Michael Somos, Mar 01 2011

Examples

			G.f. = 1 + 2*x^2 + 2*x^3 + 4*x^5 + 2*x^8 + 4*x^11 + 2*x^12 + 4*x^14 + 2*x^18 + ...
a(0) = 1 since 0 = 2*0^2 + 3*0^2, a(5) = 4 since 5 = 2*1^2 + 3*1^2 = 2*(-1)^2 + 3*1^2 = 2*1^2 + 3*(-1)^2 = 2*(-1^2) + 3*(-1)^2.
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q^2] EllipticTheta[ 3, 0, q^3], {q, 0, n}]; (* Michael Somos, Apr 19 2015 *)
    a[n_] := Module[{a, b, r}, r = Reduce[n == 2a^2 + 3b^2, {a, b}, Integers]; Which[r === False, 0, r[[0]] === And, 1, r[[0]] === Or, Length[r]]];
    Table[a[n], {n, 0, 105}] (* Jean-François Alcover, Jan 09 2019 *)
  • PARI
    for(n=0,120,print1(if(n<1,n==0,qfrep([2,0;0,3],n)[n]*2),","))
    
  • PARI
    {a(n) = my(G); if( n<0, 0, G = [2, 0; 0, 3]; polcoeff( 1 + 2 * x * Ser( qfrep( G, n)), n))}; /* Michael Somos, Mar 01 2011 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^4 + A)^5 * eta(x^6 + A)^5 / (eta(x^2 + A)^2 * eta(x^3 + A)^2 * eta(x^8 + A)^2 * eta(x^12 + A)^2), n))}; /* Michael Somos, Jan 20 2017 */
    
  • Sage
    Q = DiagonalQuadraticForm(ZZ,[3, 2])
    Q.representation_number_list(102) # Peter Luschny, Jun 20 2014

Formula

G.f.: 1 + Sum_{k>0} x^k * (1 + x^(4*k)) * (1 + x^(6*k)) / (1 + x^(12*k)) - Sum_{k>0} Kronecker( k, 3) * x^k * (1 - x^(2*k)) / (1 + x^(4*k)).
G.f.: Sum_{i, j in Z} x^(2*i^2 + 3*j^2). - Michael Somos, Mar 01 2011
Expansion of phi(q^2) * phi(q^3) in powers of q where phi() is a Ramanujan theta function. - Michael Somos, Mar 01 2011
A115660(n) = A000377(n) - a(n). - Michael Somos, Mar 01 2011
Euler transform of period 24 sequence [0, 2, 2, -3, 0, -1, 0, -1, 2, 2, 0, -4, 0, 2, 2, -1, 0, -1, 0, -3, 2, 2, 0, -2, ...]. - Michael Somos, Jan 20 2017
Expansion of eta(q^4)^5 * eta(q^6)^5 / (eta(q^2)^2 * eta(q^3)^2 * eta(q^8)^2 * eta(q^12)^2) in powers of q. - Michael Somos, Jan 20 2017
a(0) = 1, a(n) = (1-(-1)^t)*b(n) for n > 0, where t is the number of prime factors of n, counting multiplicity, which are == 2,3,5,11 (mod 24), and b() is multiplicative with b(p^e) = (e+1) for primes p == 1,5,7,11 (mod 24) and b(p^e) = (1+(-1)^e)/2 for primes p == 13,17,19,23 (mod 24). (This formula is Corollary 4.2 in the Berkovich-Yesilyurt paper). - Jeremy Lovejoy, Nov 14 2024

Extensions

Edited by Charles R Greathouse IV, Oct 28 2009
Edited by N. J. A. Sloane, Mar 04 2011