A108572 Number of partitions of n which, as multisets, are nontrivial repetitions of a multiset.
0, 0, 0, 1, 0, 3, 0, 4, 2, 7, 0, 13, 0, 15, 8, 21, 0, 37, 0, 44, 16, 56, 0, 93, 6, 101, 29, 137, 0, 217, 0, 230, 57, 297, 20, 450, 0, 490, 102, 643, 0, 918, 0, 1004, 202, 1255, 0, 1783, 14, 1992, 298, 2438, 0, 3364, 61, 3734, 491, 4565, 0, 6251, 0, 6842, 818
Offset: 1
Keywords
Examples
a(25) = 6: 1^(15)2^5 = 5{1, 1, 1, 2}, 1^52^(10) = 5{1, 2, 2}, 1^(10)3^5 = 5{3, 1, 1}, 2^53^5 = 5{3, 2}, 1^44^4 = 5{4, 1}, 5^5 = 5{5}. Note that A000041(25)=P(25)=1958, only 6 of which satisfy the criterion.
Crossrefs
Programs
-
Maple
with(combinat):PartMulti:=proc(n::nonnegint) local count,a,i,j,b,m,k,part_vec; bigcount:=0; if isprime(n) then return(bigcount) else ps:=partition(n); b:=nops(ps); for m from 2 to b-1 do p:=ps[m]; a:=nops(p); part_vec:=array(1..n); for k from 1 to n do part_vec[k]:=0 od; for i from 1 to a do j:=p[i]; part_vec[j]:=part_vec[j]+1 od; g:=0; for j from 1 to n do g:=igcd(g,part_vec[j]) od; if g>1 then bigcount:=bigcount+1 fi od; return(bigcount) end if end proc; seq(PartMulti(q),q=1..49);
-
Mathematica
Table[Length[Select[IntegerPartitions[n],And[Length[#]
1]&]],{n,20}] (* Gus Wiseman, Dec 06 2018 *)
Formula
a(n) = A018783(n)-1, n>1. - Vladeta Jovovic, Jul 28 2005
Extensions
More terms from Gus Wiseman, Dec 06 2018
Comments