cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108574 Range of A000790 (primary pretenders).

Original entry on oeis.org

4, 6, 9, 10, 14, 15, 21, 22, 25, 26, 33, 34, 38, 39, 46, 49, 51, 57, 58, 62, 65, 69, 74, 82, 85, 86, 87, 91, 93, 94, 106, 111, 118, 121, 122, 123, 129, 133, 134, 141, 142, 145, 146, 158, 159, 166, 169, 177, 178, 183, 185, 194, 201, 202, 205, 206, 213, 214, 217, 218, 219, 226, 237, 249, 254, 259, 262, 265, 267, 274, 278, 289, 291, 298, 301, 302, 303, 305, 309, 314, 321, 326, 327, 334, 339, 341, 346, 358, 361, 362, 365, 381, 382, 386, 393, 394, 398, 411, 417, 422, 427, 445, 446, 447, 451, 453, 454, 458, 466, 469, 471, 478, 481, 482, 485, 489, 501, 502, 505, 511, 514, 519, 526, 529, 537, 538, 542, 543, 545, 553, 554, 561
Offset: 1

Views

Author

David W. Wilson, Jun 10 2005

Keywords

Comments

All terms except for the last term, 561, are semiprimes (A001358). Semiprimes up to 559 that are not here: 35, 55, 77, 95, 115, 119, 143, 155, 161, 187, 203, 209, 215, 221, 235, 247, 253, 287, 295, 299, 319, 323, 329, 335, 355, 371, 377, 391, 395, 403, 407, 413, 415, 437, 473, 493, 497, 515, 517, 527, 533, 535, 551, 559. - Zak Seidov, Jan 08 2015
The LCM of all terms is 23# * 277# (where # denotes the primorial function A034386), the period of A000790, and therefore also of the related sequence b(n) = gcd(A000790(n), n). - M. F. Hasler, Feb 16 2018
Range of A295997. - Thomas Ordowski, Feb 27 2018
These numbers k < 561 are semiprimes k = pq such that p-1 | q-1, where primes p <= q. Equivalent condition is p-1 | k-1. - Thomas Ordowski, Aug 18 2018
This shows that all even semiprimes < 561 are in this sequence. The odd semiprimes not in this sequence are the semiprimes (equivalently: all terms but 275, 455, 475, 539) less than 561 in A267999 (which equals A121707 up to 695). - M. F. Hasler, Nov 09 2018

Crossrefs

Programs

  • Mathematica
    pp[n_] := For[c = 4, True, c = If[PrimeQ[c+1], c+2, c+1], If[PowerMod[n, c, c] == Mod[n, c], Return[c]]];seq[n_] := seq[n] = Table[pp[k], {k, 0, 2^n}] // Union; seq[10]; seq[n = 11]; While[ Print["n = ", n, " more terms: ", Complement[seq[n], seq[n-1]]]; seq[n] != seq[n-1], n++]; A108574 = seq[n] (* Jean-François Alcover, Oct 18 2013 *)
  • PARI
    my(A=List(561)); forprime(q=2,561\2, forprime(p=2,min(q,561\q), (q-1)%(p-1)|| listput(A, p*q))); A108574=Set(A) \\ M. F. Hasler, Nov 09 2018