A108574 Range of A000790 (primary pretenders).
4, 6, 9, 10, 14, 15, 21, 22, 25, 26, 33, 34, 38, 39, 46, 49, 51, 57, 58, 62, 65, 69, 74, 82, 85, 86, 87, 91, 93, 94, 106, 111, 118, 121, 122, 123, 129, 133, 134, 141, 142, 145, 146, 158, 159, 166, 169, 177, 178, 183, 185, 194, 201, 202, 205, 206, 213, 214, 217, 218, 219, 226, 237, 249, 254, 259, 262, 265, 267, 274, 278, 289, 291, 298, 301, 302, 303, 305, 309, 314, 321, 326, 327, 334, 339, 341, 346, 358, 361, 362, 365, 381, 382, 386, 393, 394, 398, 411, 417, 422, 427, 445, 446, 447, 451, 453, 454, 458, 466, 469, 471, 478, 481, 482, 485, 489, 501, 502, 505, 511, 514, 519, 526, 529, 537, 538, 542, 543, 545, 553, 554, 561
Offset: 1
Links
- J. H. Conway, R. K. Guy, W. A. Schneeberger and N. J. A. Sloane, The Primary Pretenders, Acta Arith. 78 (1997), 307-313.
- J. H. Conway, R. K. Guy, W. A. Schneeberger and N. J. A. Sloane, The Primary Pretenders, arXiv:math/0207180 [math.NT], 2002.
Programs
-
Mathematica
pp[n_] := For[c = 4, True, c = If[PrimeQ[c+1], c+2, c+1], If[PowerMod[n, c, c] == Mod[n, c], Return[c]]];seq[n_] := seq[n] = Table[pp[k], {k, 0, 2^n}] // Union; seq[10]; seq[n = 11]; While[ Print["n = ", n, " more terms: ", Complement[seq[n], seq[n-1]]]; seq[n] != seq[n-1], n++]; A108574 = seq[n] (* Jean-François Alcover, Oct 18 2013 *)
-
PARI
my(A=List(561)); forprime(q=2,561\2, forprime(p=2,min(q,561\q), (q-1)%(p-1)|| listput(A, p*q))); A108574=Set(A) \\ M. F. Hasler, Nov 09 2018
Comments