cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108626 Antidiagonal sums of square array A108625, in which row n equals the crystal ball sequence for A_n lattice.

Original entry on oeis.org

1, 2, 5, 14, 41, 124, 383, 1200, 3799, 12122, 38919, 125578, 406865, 1322772, 4313155, 14099524, 46192483, 151628090, 498578411, 1641921014, 5414619739, 17878144968, 59097039545, 195548471268, 647665451911, 2146947613286
Offset: 0

Views

Author

Paul D. Hanna, Jun 12 2005

Keywords

Comments

Limit a(n+1)/a(n) = 3.3829757679... = 1/r = 3 + r + r^2, where r is radius of convergence of A(x), which diverges at x=r.
Infinitely many recurrence relations of even order 2d can be built for this sequence; first define the following polynomial: P(d) = (1/2^d) * Sum_{i=0..floor(d/2)} binomial(d, 2*i) * (x^4 + 2*x^2 - 4*x + 1)^i * (x^2 + 2*x - 1)^(d - 2*i) then call c(d,k) the coefficient of term with power k in the polynomial P(d); then we have the relation: Sum_{k=0..2*d} c(d, 2*d-k)*a(n+k) = (-1)^d * Sum_{k=0..n} Sum_{i=0..k} binomial(n-k, d+i)*binomial(n-k, i)*binomial(n-i, k-i). - Thomas Baruchel, Jan 26 2015

Examples

			Log(A(x)) = 2*x + 6*x^2/2 + 20*x^3/3 + ... + A108627(n)*x^n/n + ...
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( 1/Sqrt(1-4*x+2*x^2+x^4) )); // G. C. Greubel, Oct 06 2023
    
  • Maple
    a := n -> add(binomial(n,k)*hypergeom([-k,k-n,k-n], [1,-n], 1), k=0..n):
    seq(simplify(a(n)), n=0..25); # Peter Luschny, Feb 13 2018
  • Mathematica
    CoefficientList[Series[1/Sqrt[x^4+2*x^2-4*x+1], {x, 0, 50}], x] (* Vincenzo Librandi, Nov 08 2014 *)
  • PARI
    a(n)=sum(k=0,n,sum(i=0,k,binomial(n-k,i)^2*binomial(n-i,k-i)))
    
  • PARI
    {a(n)=polcoeff( sum(m=0, n, x^m * sum(k=0, m, binomial(m, k)^2 * x^k) / (1-x +x*O(x^n))^(m+1)) , n)}
    for(n=0, 30, print1(a(n), ", ")) \\ Paul D. Hanna, Nov 08 2014
    
  • SageMath
    def A108626_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/sqrt(1-4*x+2*x^2+x^4) ).list()
    A108626_list(40) # G. C. Greubel, Oct 06 2023

Formula

a(n) = Sum_{k=0..n} Sum_{i=0..k} C(n, i)^2 * C(n+k-i, k-i).
G.f.: 1 / sqrt(x^4 + 2*x^2 - 4*x + 1). - Thomas Baruchel, Nov 08 2014
G.f.: A(x) = exp( Sum_{n>=1} A108627(n)*x^n/n ), where A108627 has g.f.: 2*x*(1 - x - x^3)/((1-x)*(1 - 3*x - x^2 - x^3)).
a(n) = ( (5*n-3)*a(n-1) - (6*n-8)*a(n-2) + (2*n-4)*a(n-3) - (n-2)*a(n-4) + (n-3)*a(n-5) ) / n. - Thomas Baruchel, Nov 08 2014
a(n+2) - 2*a(n+1) - a(n) = 2*Sum_{k=0..n} Sum_{i=0..k} binomial(n-k+1,i-1)*binomial(n-k+1,i)*binomial(n-i+1,k-i) = Sum_{k=0..n} a(k)*A086581(n-k+1). - Thomas Baruchel, Nov 08 2014
G.f.: Sum_{n>=0} (2*n)!/n!^2 * x^(2*n) / ((1-x)*(1-2*x)^(3*n+1)). - Paul D. Hanna, Nov 08 2014
G.f.: Sum_{n>=0} x^n/(1-x)^(n+1) * Sum_{k=0..n} C(n,k)^2 * x^k. - Paul D. Hanna, Nov 08 2014
Partial sums of A171155: a(n) = Sum_{i=0..n} A171155(n). - Thomas Baruchel, Nov 08 2014
Recurrence: n*a(n) = 2*(2*n-1)*a(n-1) - 2*(n-1)*a(n-2) - (n-2)*a(n-4). - Vaclav Kotesovec, Dec 20 2015
a(n) = Sum_{k=0..n} binomial(n,k)*hypergeometric3F2([-k,k-n,k-n], [1,-n], 1). - Peter Luschny, Feb 13 2018