cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108647 a(n) = (n+1)^2*(n+2)^2*(n+3)^2*(n+4)/144.

Original entry on oeis.org

1, 20, 150, 700, 2450, 7056, 17640, 39600, 81675, 157300, 286286, 496860, 828100, 1332800, 2080800, 3162816, 4694805, 6822900, 9728950, 13636700, 18818646, 25603600, 34385000, 45630000, 59889375, 77808276, 100137870, 127747900
Offset: 0

Views

Author

Emeric Deutsch, Jun 13 2005

Keywords

Comments

Kekulé numbers for certain benzenoids.
a(n-4), n>=4, is the number of ways to have n identical objects in m=4 of altogether n distinguishable boxes (n-4 boxes stay empty). - Wolfdieter Lang, Nov 13 2007

Examples

			a(2) = 150 because n=6 identical balls can be put into m=4 of n=6 distinguishable boxes in binomial(6,4)*(4!/(3!*1!)+ 4!/(2!*2!)) = 15*(4 + 6) = 150 ways. The m=4 part partitions of 6, namely (1^3,3) and (1^2,2^2) specify the filling of each of the 15 possible four box choices. - _Wolfdieter Lang_, Nov 13 2007
		

References

  • S. J. Cyvin and I. Gutman, KekulĂ© structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 230, no. 23).

Crossrefs

Fourth column of triangle A103371.

Programs

  • Haskell
    a108647 = flip a103371 3 . (+ 3)  -- Reinhard Zumkeller, Apr 04 2014
    
  • Magma
    [4*Binomial(n+4, 4)^2/(n+4): n in [0..30]]; // G. C. Greubel, Oct 28 2022
    
  • Maple
    a:=(n+1)^2*(n+2)^2*(n+3)^2*(n+4)/144: seq(a(n),n=0..30);
  • Mathematica
    Array[Binomial[# + 4, 4] Binomial[# + 3, 2] (# + 1)/3 &, 28, 0] (* or *)
    CoefficientList[Series[(1 + 12 x + 18 x^2 + 4 x^3)/(1 - x)^8, {x, 0, 27}], x] (* Michael De Vlieger, Dec 17 2017 *)
  • MuPAD
    4*binomial(n,4)^2/n $ n = 4..35; // Zerinvary Lajos, May 09 2008
    
  • SageMath
    [4*binomial(n+4, 4)^2/(n+4) for n in (0..30)] # G. C. Greubel, Oct 28 2022

Formula

a(n) = C(n+4,4)*C(n+3,2)(n+1)/3. - Paul Barry, May 13 2006
G.f.: (1+12*x+18*x^2+4*x^3)/(1-x)^8.
a(n) = 4*C(n,4)^2/n, n >= 4. - Zerinvary Lajos, May 09 2008
From Amiram Eldar, May 29 2022: (Start)
Sum_{n>=0} 1/a(n) = 20*Pi^2 - 589/3.
Sum_{n>=0} (-1)^n/a(n) = 64*log(2) - 2*Pi^2 - 71/3. (End)
E.g.f.: (144 + 2736*x + 7992*x^2 + 7416*x^3 + 2826*x^4 + 486*x^5 + 37*x^6 + x^7)*exp(x)/144. - G. C. Greubel, Oct 28 2022