cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108649 a(n) = (n+1)*(n+2)*(n+3)*(13*n^3 + 69*n^2 + 113*n + 60)/360.

Original entry on oeis.org

1, 17, 111, 457, 1428, 3710, 8442, 17382, 33099, 59191, 100529, 163527, 256438, 389676, 576164, 831708, 1175397, 1630029, 2222563, 2984597, 3952872, 5169802, 6684030, 8551010, 10833615, 13602771, 16938117, 20928691, 25673642, 31282968
Offset: 0

Views

Author

Emeric Deutsch, Jun 13 2005

Keywords

Comments

Kekulé numbers for certain benzenoids.

Crossrefs

Programs

  • Magma
    [(13*n^3+69*n^2+113*n+60)*Binomial(n+3,3)/60: n in [0..40]]; // G. C. Greubel, Oct 19 2023
    
  • Maple
    a:=(n+1)*(n+2)*(n+3)*(13*n^3+69*n^2+113*n+60)/360: seq(a(n),n=0..36);
  • Mathematica
    Table[(n+1)(n+2)(n+3)(13n^3+69n^2+113n+60)/360,{n,0,30}] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1}, {1,17,111,457,1428,3710, 8442},30] (* Harvey P. Dale, Jul 01 2012 *)
  • PARI
    Vec((1+10*x+13*x^2+2*x^3)/(1-x)^7 + O(x^40)) \\ Colin Barker, Apr 22 2020
    
  • SageMath
    [(13*n^3+69*n^2+113*n+60)*binomial(n+3,3)/60 for n in range(41)] # G. C. Greubel, Oct 19 2023

Formula

a(0)=1, a(1)=17, a(2)=111, a(3)=457, a(4)=1428, a(5)=3710, a(6)=8442, a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7). - Harvey P. Dale, Jul 01 2012
G.f.: (1 + 10*x + 13*x^2 + 2*x^3) / (1 - x)^7. - Colin Barker, Apr 22 2020
E.g.f.: (1/360)*(360 + 5760*x + 14040*x^2 + 10440*x^3 + 2985*x^4 + 342*x^5 + 13*x^6)*exp(x). - G. C. Greubel, Oct 19 2023