cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A108650 a(n) = (n+1)^2*(n+2)*(n+3)*(3*n+4)/24.

Original entry on oeis.org

1, 14, 75, 260, 700, 1596, 3234, 6000, 10395, 17050, 26741, 40404, 59150, 84280, 117300, 159936, 214149, 282150, 366415, 469700, 595056, 745844, 925750, 1138800, 1389375, 1682226, 2022489, 2415700, 2867810, 3385200, 3974696, 4643584
Offset: 0

Views

Author

Emeric Deutsch, Jun 13 2005

Keywords

Comments

Kekulé numbers for certain benzenoids.

Crossrefs

Programs

  • Magma
    [(n+1)*StirlingSecond(n+3,n+1): n in [0..40]]; // G. C. Greubel, Oct 19 2023
    
  • Maple
    a:= n-> (n+1)^2*(n+2)*(n+3)*(3*n+4)/24: seq(a(n),n=0..36);
    seq((n+1)*stirling2(n+3,n+1), n=0..32); # Zerinvary Lajos, Jan 20 2007
  • Mathematica
    Table[((n+1)^2 (n+2)(n+3)(3n+4))/24,{n,0,40}] (* or *) Table[n StirlingS2[n+2,n],{n,40}] (* Harvey P. Dale, Dec 01 2013 *)
  • PARI
    Vec((1 + 8*x + 6*x^2) / (1 - x)^6 + O(x^30)) \\ Colin Barker, Apr 22 2020
    
  • SageMath
    [(n+1)*stirling_number2(n+3,n+1) for n in range(41)] # G. C. Greubel, Oct 19 2023

Formula

From Zerinvary Lajos, Jan 20 2007: (Start)
a(n) = A001477(n+1)*A001296(n+1) = (n+1)*A001296(n+1).
a(n) = (n+1)*Stirling2(n+3,n+1). (End)
From Colin Barker, Apr 22 2020: (Start)
G.f.: (1 + 8*x + 6*x^2) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>5.
(End)
From Amiram Eldar, May 29 2022: (Start)
Sum_{n>=0} 1/a(n) 2*Pi^2 + 54*sqrt(3)*Pi/5 + 486*log(3)/5 - 921/5.
Sum_{n>=0} (-1)^n/a(n) = Pi^2 - 108*sqrt(3)*Pi/5 - 528*log(2)/5 + 909/5. (End)
E.g.f.: (1/24)*(24 +312*x +576*x^2 +304*x^3 +55*x^4 +3*x^5)*exp(x). - G. C. Greubel, Oct 19 2023

A108645 a(n) = (n+1)*(n+2)^2*(n+3)^2*(n+4)*(2*n^2 + 6*n + 5)/720.

Original entry on oeis.org

1, 26, 250, 1435, 5978, 19992, 56952, 143550, 328515, 695266, 1379378, 2591953, 4650100, 8015840, 13344864, 21546684, 33857829, 51929850, 77934010, 114684647, 165783310, 235785880, 330395000, 456680250, 623328615, 840927906, 1122285906
Offset: 0

Views

Author

Emeric Deutsch, Jun 13 2005

Keywords

Comments

Kekulé numbers for certain benzenoids.

References

  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 230, no. 21).

Crossrefs

Programs

  • Magma
    B:=Binomial; [(2*n^2+6*n+5)*B(n+4,4)*B(n+3,2)/15: n in [0..40]]; // G. C. Greubel, Oct 19 2023
    
  • Maple
    a:=(n+1)*(n+2)^2*(n+3)^2*(n+4)*(2*n^2+6*n+5)/720: seq(a(n),n=0..30);
  • Mathematica
    Table[(n+1)(n+2)^2(n+3)^2(n+4)(2n^2+6n+5)/720,{n,0,30}] (* or *) LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{1,26,250,1435, 5978,19992,56952,143550,328515},30] (* Harvey P. Dale, Sep 05 2016 *)
  • SageMath
    b=binomial; [(2*n^2+6*n+5)*b(n+4,4)*b(n+3,2)/15 for n in range(41)] # G. C. Greubel, Oct 19 2023

Formula

G.f.: (1+17*x+52*x^2+37*x^3+5*x^4)/(1-x)^9. - Harvey P. Dale, Sep 05 2016
E.g.f.: (1/6!)*(720 + 18000*x + 71640*x^2 + 91440*x^3 + 49050*x^4 + 12486*x^5 + 1565*x^6 + 92*x^7 + 2*x^8)*exp(x). - G. C. Greubel, Oct 19 2023

A108646 a(n) = (n+1)*(n+2)^2*(n+3)*(11*n^3 + 58*n^2 + 101*n + 60)/720.

Original entry on oeis.org

1, 23, 194, 985, 3668, 11074, 28728, 66438, 140415, 276001, 511082, 900263, 1519882, 2473940, 3901024, 5982300, 8950653, 13101051, 18802210, 26509637, 36780128, 50287798, 67841720, 90405250, 119117115, 155314341, 200557098
Offset: 0

Views

Author

Emeric Deutsch, Jun 13 2005

Keywords

Comments

Kekulé numbers for certain benzenoids.

References

  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 230, no. 22).

Crossrefs

Programs

  • Magma
    [(n+2)*(11*n^3+58*n^2+101*n+60)*Binomial(n+3,3)/120: n in [0..40]]; // G. C. Greubel, Oct 19 2023
    
  • Maple
    a:=(n+1)*(n+2)^2*(n+3)*(11*n^3+58*n^2+101*n+60)/720: seq(a(n),n=0..30);
  • Mathematica
    Table[(n+2)*(n+3)!*(11*n^3+58*n^2+101*n+60)/(6!*n!), {n,0,40}] (* G. C. Greubel, Oct 19 2023 *)
  • Python
    A108646_list, m = [], [77, -85, 28, -1, 1, 1, 1, 1]
    for _ in range(10001):
        A108646_list.append(m[-1])
        for i in range(7):
            m[i+1] += m[i] # Chai Wah Wu, Jun 12 2016
    
  • SageMath
    [(n+2)*(11*n^3+58*n^2+101*n+60)*binomial(n+3,3)/120 for n in range(41)] # G. C. Greubel, Oct 19 2023

Formula

From Chai Wah Wu, Jun 12 2016: (Start)
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n > 7.
G.f.: (1 + 15*x + 38*x^2 + 21*x^3 + 2*x^4)/(1 - x)^8. (End)
E.g.f.: (1/6!)*(720 + 15840*x + 53640*x^2 + 56520*x^3 + 24030*x^4 + 4548*x^5 + 377*x^6 + 11*x^7)*exp(x). - G. C. Greubel, Oct 19 2023
Showing 1-3 of 3 results.