cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108650 a(n) = (n+1)^2*(n+2)*(n+3)*(3*n+4)/24.

Original entry on oeis.org

1, 14, 75, 260, 700, 1596, 3234, 6000, 10395, 17050, 26741, 40404, 59150, 84280, 117300, 159936, 214149, 282150, 366415, 469700, 595056, 745844, 925750, 1138800, 1389375, 1682226, 2022489, 2415700, 2867810, 3385200, 3974696, 4643584
Offset: 0

Views

Author

Emeric Deutsch, Jun 13 2005

Keywords

Comments

Kekulé numbers for certain benzenoids.

Crossrefs

Programs

  • Magma
    [(n+1)*StirlingSecond(n+3,n+1): n in [0..40]]; // G. C. Greubel, Oct 19 2023
    
  • Maple
    a:= n-> (n+1)^2*(n+2)*(n+3)*(3*n+4)/24: seq(a(n),n=0..36);
    seq((n+1)*stirling2(n+3,n+1), n=0..32); # Zerinvary Lajos, Jan 20 2007
  • Mathematica
    Table[((n+1)^2 (n+2)(n+3)(3n+4))/24,{n,0,40}] (* or *) Table[n StirlingS2[n+2,n],{n,40}] (* Harvey P. Dale, Dec 01 2013 *)
  • PARI
    Vec((1 + 8*x + 6*x^2) / (1 - x)^6 + O(x^30)) \\ Colin Barker, Apr 22 2020
    
  • SageMath
    [(n+1)*stirling_number2(n+3,n+1) for n in range(41)] # G. C. Greubel, Oct 19 2023

Formula

From Zerinvary Lajos, Jan 20 2007: (Start)
a(n) = A001477(n+1)*A001296(n+1) = (n+1)*A001296(n+1).
a(n) = (n+1)*Stirling2(n+3,n+1). (End)
From Colin Barker, Apr 22 2020: (Start)
G.f.: (1 + 8*x + 6*x^2) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>5.
(End)
From Amiram Eldar, May 29 2022: (Start)
Sum_{n>=0} 1/a(n) 2*Pi^2 + 54*sqrt(3)*Pi/5 + 486*log(3)/5 - 921/5.
Sum_{n>=0} (-1)^n/a(n) = Pi^2 - 108*sqrt(3)*Pi/5 - 528*log(2)/5 + 909/5. (End)
E.g.f.: (1/24)*(24 +312*x +576*x^2 +304*x^3 +55*x^4 +3*x^5)*exp(x). - G. C. Greubel, Oct 19 2023