cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108687 Numbers of the form (9^i)*(11^j), with i, j >= 0.

Original entry on oeis.org

1, 9, 11, 81, 99, 121, 729, 891, 1089, 1331, 6561, 8019, 9801, 11979, 14641, 59049, 72171, 88209, 107811, 131769, 161051, 531441, 649539, 793881, 970299, 1185921, 1449459, 1771561, 4782969, 5845851, 7144929, 8732691, 10673289, 13045131
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Jun 17 2005

Keywords

Crossrefs

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a108687 n = a108687_list !! (n-1)
    a108687_list = f $ singleton (1,0,0) where
       f s = y : f (insert (9 * y, i + 1, j) $ insert (11 * y, i, j + 1) s')
             where ((y, i, j), s') = deleteFindMin s
    -- Reinhard Zumkeller, May 15 2015
    
  • Mathematica
    f[upto_]:=With[{max9=Floor[Log[9,upto]],max11=Floor[Log[11,upto]]}, Select[Union[Times@@{9^First[#],11^Last[#]}&/@Tuples[{Range[0, max9], Range[0, max11]}]], #<=upto&]]; f[14000000]  (* Harvey P. Dale, Mar 11 2011 *)
  • Python
    from sympy import integer_log
    def A108687(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(integer_log(x//11**i,9)[0]+1 for i in range(integer_log(x,11)[0]+1))
        return bisection(f,n,n) # Chai Wah Wu, Mar 25 2025

Formula

Sum_{n>=1} 1/a(n) = (9*11)/((9-1)*(11-1)) = 99/80. - Amiram Eldar, Sep 24 2020
a(n) ~ exp(sqrt(2*log(9)*log(11)*n)) / sqrt(99). - Vaclav Kotesovec, Sep 24 2020