cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A108756 A triangle related to the Jacobsthal polynomials.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 4, 5, 1, 1, 3, 6, 6, 7, 1, 1, 1, 10, 15, 8, 9, 1, 1, 4, 10, 21, 28, 10, 11, 1, 1, 1, 20, 35, 36, 45, 12, 13, 1, 1, 5, 15, 56, 84, 55, 66, 14, 15, 1, 1, 1, 35, 70, 120, 165, 78, 91, 16, 17, 1, 1, 6, 21, 126, 210, 220, 286, 105, 120, 18, 19, 1, 1
Offset: 0

Views

Author

Paul Barry, Jun 22 2005

Keywords

Comments

Riordan array ((1 + x - x^2)/(1 - x^2)^2, x/(1 - x^2)^2). Row sums are A108742. Diagonal sums are Fibonacci(n+1) = A000045(n+1). Corresponding diagonals triangle is A102426.

Examples

			Triangle begins (with rows n >= 0 and columns k >= 0) as follows:
  1;
  1,  1;
  1,  1,  1;
  2,  3,  1,  1;
  1,  4,  5,  1,  1;
  3,  6,  6,  7,  1,  1;
  1, 10, 15,  8,  9,  1,  1;
  4, 10, 21, 28, 10, 11,  1,  1;
  1, 20, 35, 36, 45, 12, 13,  1, 1;
  5, 15, 56, 84, 55, 66, 14, 15, 1, 1; ...
		

Crossrefs

Programs

  • Magma
    [[Binomial(Floor((n+k+1)/2)+k, Floor((n+k)/2)-k): k in [0..n]]: n in [0..12]]; // G. C. Greubel, May 29 2019
    
  • Mathematica
    Table[Binomial[Floor[(n+k+1)/2]+k, Floor[(n+k)/2]-k], {n,0,12}, {k,0,n} ]//Flatten (* G. C. Greubel, May 29 2019 *)
  • PARI
    {T(n,k) = binomial(floor((n+k+1)/2)+k, floor((n+k)/2)-k)}; \\ G. C. Greubel, May 29 2019
    
  • Sage
    [[binomial(floor((n+k+1)/2)+k, floor((n+k)/2)-k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, May 29 2019

Formula

Number triangle: T(n, k) = binomial(floor((n + k + 1)/2) + k, floor((n + k)/2 - k)) for 0 <= k <= n.
From Petros Hadjicostas, May 30 2019: (Start)
Bivariate g.f.: Sum_{n, k > = 0} T(n,k) * x^n * y^k = (1 + x - x^2)/((1 - x^2)^2 - x * y). (Here, we assume T(n, k) = 0 for n < k. Because T(n, k) = A102426(n + 1 + k, k), we may use Tom Copeland's g.f. of the latter array, to get the g.f. of the current triangular array.)
G.f. for column k >= 0: (1 + x - x^2) * x^k/(1 - x^2)^(2*k + 2).
Recurrence: T(n, k) = T(n - 2, k) + T(n - (1 - (-1)^(n + k))/2, k - (1 + (-1)^(n + k))/2), for n >= 3 and 1 <= k <= n - 2, starting with T(n, n) = 1 = T(n + 1, n) for n >= 0, T(n, 0) = 1 when n is even >= 0, and T(n, 0) = (n + 1)/2 when n is odd >= 1.
Another recurrence: T(n, k) = T(n - 1, k - 1) + 2*T(n - 2, k) - T(n - 4, k) for n >= 4 and 1 <= k <= n - 4. (This follows from the fact that the denominator of the bivariate g.f. is x^0 * y^0 - x^1 * y^1 - 2 * x^2 * y^0 - x^4 * y^0.)
(End)

Extensions

More terms from Petros Hadjicostas, May 29 2019
Showing 1-1 of 1 results.