cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A209245 Main diagonal of the triple recurrence x(i,j,k) = x(i-1,j,k) + x(i,j-1,k) + x(i,j,k-1) with x(i,j,k) = 1 if 0 in {i,j,k}.

Original entry on oeis.org

1, 3, 33, 543, 10497, 220503, 4870401, 111243135, 2602452993, 61985744967, 1497148260033, 36566829737727, 901314269530113, 22385640256615743, 559574590912019457, 14065064484334380543, 355222860485671141377, 9008982166319523972903, 229325469394627488082497
Offset: 0

Views

Author

Jon Perry, Jan 13 2013

Keywords

Comments

Level sums are defined as the sum of x(i,j,k) with i,j,k >= 0 and i+j+k = n. This gives 3*A164039(n-1) for n>0.
Slice x(1,j,k) with j,k >= 0 of the cube begins:
1, 1, 1, 1, 1, 1, 1, 1, ... A000012
1, 3, 5, 7, 9, 11, 13, 15, ... A005408
1, 5, 11, 19, 29, 41, 55, 71, ... A028387
1, 7, 19, 39, 69, 111, 167, 239, ... A108766(k+1)
1, 9, 29, 69, 139, 251, 419, 659, ...
1, 11, 41, 111, 251, 503, 923, 1583, ...
1, 13, 55, 167, 419, 923, 1847, 3431, ...
1, 15, 71, 239, 659, 1583, 3431, 6863, ...
The main diagonal of the slice is A134760.

Crossrefs

Column k=3 of A210472. - Alois P. Heinz, Jan 23 2013

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, 2*n+1,
          ((888-3020*n+3668*n^2-1912*n^3+364*n^4) *a(n-1)
           +3*(3*n-4)*(7*n-5)*(2*n-3)*(3*n-5) *a(n-2)) /
           ((2*n-1)*(7*n-12)*(n-1)^2))
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Jan 17 2013
  • Mathematica
    b[] = 0; b[args__] := b[args] = If[{args}[[1]] == 0, 1, Sum[b @@ Sort[ ReplacePart[{args}, i -> {args}[[i]] - 1]], {i, 1, Length[{args}]}]];
    a[n_] := b @@ Table[n, 3];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jun 03 2018, from Alois P. Heinz's Maple code for A210472 *)

Formula

a(n) = x(n,n,n) with x(i,j,k) = 1 if 0 in {i,j,k} and x(i,j,k) = x(i-1,j,k) + x(i,j-1,k) + x(i,j,k-1) else.
a(n) ~ 3^(3*n+1/2) / (8*Pi*n). - Vaclav Kotesovec, Sep 07 2014

A127737 A002260 * A127701.

Original entry on oeis.org

1, 3, 4, 3, 7, 9, 3, 7, 13, 16, 3, 7, 13, 21, 25, 3, 7, 13, 21, 31, 36, 3, 7, 13, 21, 31, 43, 49, 3, 7, 13, 21, 31, 43, 57, 64, 3, 7, 13, 21, 31, 43, 57, 73, 81, 3, 7, 13, 21, 31, 43, 57, 73, 91, 100
Offset: 1

Views

Author

Gary W. Adamson, Jan 27 2007

Keywords

Comments

Deleting the right border (1, 4, 9, 16, ...), rows tend to A002061 starting (3, 7, 13, 21, 31, ...). Row sums = A108766: (1, 7, 19, 39, 69, 111, ...).

Examples

			First few rows of the triangle:
  1;
  3, 4;
  3, 7,  9;
  3, 7, 13, 16;
  3, 7, 13, 21, 25;
  ...
		

Crossrefs

Formula

A002260 * A127701 as infinite lower triangular matrices.
Showing 1-2 of 2 results.