cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108814 Numbers k such that k^4 + 4 is semiprime.

Original entry on oeis.org

3, 5, 15, 25, 55, 125, 205, 385, 465, 635, 645, 715, 1095, 1145, 1175, 1245, 1275, 1315, 1375, 1565, 1615, 1675, 1685, 1965, 2055, 2085, 2095, 2405, 2455, 2535, 2665, 2835, 2925, 3135, 3305, 3535, 3755, 3775, 4025, 4155, 4175, 4365, 4605, 4615, 4735, 4785
Offset: 1

Views

Author

Jason Earls, Jul 10 2005

Keywords

Comments

Except for the first, all the terms above generate brilliant numbers.
Numbers n such that n - 1 + i and n + 1 + i are (twin) Gaussian primes, see Shanks. - Charles R Greathouse IV, Apr 20 2011

Crossrefs

Programs

  • Magma
    IsSemiprime:=func< n | &+[ k[2]: k in Factorization(n) ] eq 2 >; [ n: n in [1..5000] | IsSemiprime(n^4+4)]; // Vincenzo Librandi, Apr 20 2011
  • Mathematica
    Select[Range[5000],PrimeOmega[#^4+4]==2&] (* Harvey P. Dale, Sep 07 2017 *)
  • PARI
    forstep(n=1,1e5,2,if(isprime(n^2-2*n+2) && isprime(n^2+2*n+2), print1(n", "))) \\ Charles R Greathouse IV, Apr 20 2011
    

Formula

a(k) = A096012(k) + 1. (Because n^4+4 = ((n-1)^2+1)((n+1)^2+1).) - Jeppe Stig Nielsen, Feb 26 2016