cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A096012 Numbers k such that k^2+1 and (k+2)^2+1 are both prime; twin k^2+1 primes.

Original entry on oeis.org

2, 4, 14, 24, 54, 124, 204, 384, 464, 634, 644, 714, 1094, 1144, 1174, 1244, 1274, 1314, 1374, 1564, 1614, 1674, 1684, 1964, 2054, 2084, 2094, 2404, 2454, 2534, 2664, 2834, 2924, 3134, 3304, 3534, 3754, 3774, 4024, 4154, 4174, 4364, 4604, 4614, 4734, 4784
Offset: 1

Views

Author

Jason Earls, Jul 20 2004

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [1..5000] | IsPrime(n^2+1) and IsPrime((n+2)^2+1)]; // Vincenzo Librandi, Feb 27 2016
    
  • Mathematica
    Select[Range[5000],AllTrue[{#^2+1,(#+2)^2+1},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jul 23 2014 *)
    Select[Range[5000], PrimeQ[#^2 + 1] && PrimeQ[(# + 2)^2 + 1] &] (* Vincenzo Librandi, Feb 27 2016 *)
  • PARI
    isok(n) = isprime(n^2+1) && isprime((n+2)^2+1); \\ Michel Marcus, Feb 27 2016

Formula

a(k) = A108814(k) - 1. - Jeppe Stig Nielsen, Feb 26 2016

A108868 Numbers n such that n^5 + 3 is semiprime.

Original entry on oeis.org

1, 2, 4, 6, 11, 14, 18, 19, 24, 31, 32, 38, 40, 46, 50, 55, 59, 70, 74, 76, 84, 92, 96, 100, 115, 119, 128, 139, 148, 150, 151, 154, 155, 158, 164, 178, 184, 200, 203, 204, 206, 210, 230, 236, 238, 239, 242, 248, 256, 263, 272, 278, 284, 295, 299, 304, 306, 310
Offset: 1

Views

Author

Jonathan Vos Post, Jul 12 2005

Keywords

Comments

Note that n^5 + 3 is irreducible over integers, unlike n^5 + 1 as in A104238.

Examples

			1^5 + 3 = 4 = 2 * 2
2^5 + 3 = 35 = 5 * 7
4^5 + 3 = 1027 = 13 * 79
6^5 + 3 = 7779 = 3 * 2593
11^5 + 3 = 161054 = 2 * 80527
14^5 + 3 = 89 * 6043
100^5 + 3 = 10000000003 = 7 * 1428571429
1000^5 + 3 = 1000000000000003 = 14902357 * 67103479
1000000^5 + 3 = 1000000000000000000000000000003 = 1859827 * 537684419034673655130289.
		

Crossrefs

Programs

  • Maple
    with(numtheory): a:=proc(n) if bigomega(n^5+3)=2 then n else fi end: seq(a(n),n=1..400); # Emeric Deutsch, Jul 16 2005
  • Mathematica
    Select[Range[400],PrimeOmega[#^5+3]==2&] (* Harvey P. Dale, Jul 16 2017 *)

Extensions

More terms from Emeric Deutsch, Jul 16 2005

A217583 Numbers n^2+1 such that (n-1)^2+1 and (n+1)^2+1 are prime.

Original entry on oeis.org

10, 26, 226, 626, 3026, 15626, 42026, 148226, 216226, 403226, 416026, 511226, 1199026, 1311026, 1380626, 1550026, 1625626, 1729226, 1890626, 2449226, 2608226, 2805626, 2839226, 3861226, 4223026, 4347226, 4389026, 5784026, 6027026, 6426226, 7102226, 8037226
Offset: 1

Views

Author

Michel Lagneau, Oct 07 2012

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 1 to 500 do: x1:=n^2+1:x2:=(n+2)^2 + 1:if type(x1,prime)=true and type(x2,prime)=true then printf(`%d, `,(n+1)^2+1):else fi:od:
  • Mathematica
    Select[Partition[Range[3000]^2+1,3,1],AllTrue[{#[[1]],#[[3]]},PrimeQ]&][[All,2]] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jan 03 2019 *)
  • PARI
    forstep(n=3,1e3,2,if(isprime(n^2+2*n+2) && isprime(n^2-2*n+2), print1(n^2+1", "))) \\ Charles R Greathouse IV, Oct 09 2012

A351170 Consider the primes of the form p(m)=m^2+1 such that p(m+2) is also prime for some m. The sequence lists the sums p(m) + p(m+2).

Original entry on oeis.org

22, 54, 454, 1254, 6054, 31254, 84054, 296454, 432454, 806454, 832054, 1022454, 2398054, 2622054, 2761254, 3100054, 3251254, 3458454, 3781254, 4898454, 5216454, 5611254, 5678454, 7722454, 8446054, 8694454, 8778054, 11568054, 12054054, 12852454, 14204454, 16074454
Offset: 1

Views

Author

Michel Lagneau, Feb 04 2022

Keywords

Examples

			a(3) = 454 because A096012(3) = 14, 14^2+1 = 197, (14+2)^2+1 = 257, and 197 + 257 = 454.
		

Crossrefs

Programs

  • Maple
    nn:=3000:
    for n from 2 by 2 to nn do:
      p1:=n^2+1:p2:=(n+2)^2+1:
       if isprime(p1) and isprime(p2)
        then
        s:=p1+p2:printf(`%d, `,s):
        else
       fi:
    od:
  • Mathematica
    f[n_] := 2*n^2 + 4*n + 6; f /@ Select[Range[3000], And @@ PrimeQ[{#^2 + 1, (# + 2)^2 + 1}] &] (* Amiram Eldar, Feb 04 2022 *)
  • PARI
    lista(nn) = {for (m=1, nn, if (isprime(m^2+1) && isprime(m^2+4*m+5), print1(2*m^2+4*m+6, ", ")););} \\ Michel Marcus, Feb 04 2022

Formula

For n>1, a(n) == 54 (mod 100) (see proof above).
a(n) = 2*(A096012(n)+1)^2+4 = 2*A108814(n)^2+4. - Alois P. Heinz, Feb 04 2022
For n > 1, a(n) mod 400 = 54; a(n) mod 1200 = 54 or 454; a(n) mod 2000 = 54, 454, or 1254; a(n) mod 54, 454, 1254, or 2454. - Jon E. Schoenfield, Feb 04 2022
Showing 1-4 of 4 results.