cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A253906 Numbers n such that n^2 + 3 and n^3 + 3 are semiprime.

Original entry on oeis.org

1, 6, 20, 34, 40, 44, 46, 56, 102, 116, 120, 170, 174, 196, 200, 204, 220, 226, 232, 234, 252, 260, 262, 294, 296, 320, 334, 336, 344, 346, 358, 360, 382, 386, 392, 412, 426, 464, 476, 482, 490, 494, 514, 520, 526, 536, 556, 564, 582, 586, 592, 646, 658, 716
Offset: 1

Views

Author

K. D. Bajpai, Jan 24 2015

Keywords

Comments

All terms in this sequence, except a(1), are even.

Examples

			a(2) = 6;
6^2 + 3 = 39 = 3 * 13;
6^3 + 3 = 219 = 3 * 73;
Both are semiprime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^3], k = 3; PrimeOmega[(#^2 + k)] == 2 && PrimeOmega[(#^3 + k)] == 2 &]
  • PARI
    issemiprime(q) = q>0 && bigomega(q)==2
    select(n->issemiprime(n^2+3)&&issemiprime(n^3+3), vector(2000, n, n)) \\ Colin Barker, Jan 28 2015

A253907 Numbers n such that n^2 + 3, n^3 + 3, n^4 + 3, n^5 + 3, n^6 + 3 and n^7 + 3 are semiprime.

Original entry on oeis.org

1, 976, 5380, 16582, 17864, 22316, 27922, 34930, 44954, 50744, 61264, 72670, 107534, 147776, 193774, 195266, 240170, 260920, 265292, 281582, 314462, 337832, 342014, 367060, 379784, 383930, 384704, 392050, 421226, 455734, 463790, 498134, 499306, 510194, 538384
Offset: 1

Views

Author

K. D. Bajpai, Jan 24 2015

Keywords

Comments

All terms in this sequence, except a(1), are even.
Subsequence of A253906.

Examples

			a(2) = 976;
976^2 + 3 = 952579 = 43 * 22153;
976^3 + 3 = 929714179 = 1013 * 917783;
976^4 + 3 = 907401035779 = 7 * 129628719397;
976^5 + 3 = 885623410917379 = 2224441 * 398133019;
976^6 + 3 = 864368449055358979 = 97327 * 8881075642477;
976^7 + 3 = 843623606278030360579 = 16403765263 * 51428656333;
All six are semiprime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^5], k = 3; PrimeOmega[(#^2 + k)] == 2 && PrimeOmega[(#^3 + k)] == 2 && PrimeOmega[(#^4 + k)] == 2 && PrimeOmega[(#^5 + k)] == 2 &&  PrimeOmega[(#^6 + k)] == 2  && PrimeOmega[(#^7 + k)] == 2 &]
    Select[Range[54*10^4],Union[PrimeOmega[#^Range[2,7]+3]]=={2}&] (* Harvey P. Dale, Jul 30 2022 *)
Showing 1-2 of 2 results.