A253907 Numbers n such that n^2 + 3, n^3 + 3, n^4 + 3, n^5 + 3, n^6 + 3 and n^7 + 3 are semiprime.
1, 976, 5380, 16582, 17864, 22316, 27922, 34930, 44954, 50744, 61264, 72670, 107534, 147776, 193774, 195266, 240170, 260920, 265292, 281582, 314462, 337832, 342014, 367060, 379784, 383930, 384704, 392050, 421226, 455734, 463790, 498134, 499306, 510194, 538384
Offset: 1
Keywords
Examples
a(2) = 976; 976^2 + 3 = 952579 = 43 * 22153; 976^3 + 3 = 929714179 = 1013 * 917783; 976^4 + 3 = 907401035779 = 7 * 129628719397; 976^5 + 3 = 885623410917379 = 2224441 * 398133019; 976^6 + 3 = 864368449055358979 = 97327 * 8881075642477; 976^7 + 3 = 843623606278030360579 = 16403765263 * 51428656333; All six are semiprime.
Links
- K. D. Bajpai, Table of n, a(n) for n = 1..555
Programs
-
Mathematica
Select[Range[10^5], k = 3; PrimeOmega[(#^2 + k)] == 2 && PrimeOmega[(#^3 + k)] == 2 && PrimeOmega[(#^4 + k)] == 2 && PrimeOmega[(#^5 + k)] == 2 && PrimeOmega[(#^6 + k)] == 2 && PrimeOmega[(#^7 + k)] == 2 &] Select[Range[54*10^4],Union[PrimeOmega[#^Range[2,7]+3]]=={2}&] (* Harvey P. Dale, Jul 30 2022 *)
Comments