cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A253907 Numbers n such that n^2 + 3, n^3 + 3, n^4 + 3, n^5 + 3, n^6 + 3 and n^7 + 3 are semiprime.

Original entry on oeis.org

1, 976, 5380, 16582, 17864, 22316, 27922, 34930, 44954, 50744, 61264, 72670, 107534, 147776, 193774, 195266, 240170, 260920, 265292, 281582, 314462, 337832, 342014, 367060, 379784, 383930, 384704, 392050, 421226, 455734, 463790, 498134, 499306, 510194, 538384
Offset: 1

Views

Author

K. D. Bajpai, Jan 24 2015

Keywords

Comments

All terms in this sequence, except a(1), are even.
Subsequence of A253906.

Examples

			a(2) = 976;
976^2 + 3 = 952579 = 43 * 22153;
976^3 + 3 = 929714179 = 1013 * 917783;
976^4 + 3 = 907401035779 = 7 * 129628719397;
976^5 + 3 = 885623410917379 = 2224441 * 398133019;
976^6 + 3 = 864368449055358979 = 97327 * 8881075642477;
976^7 + 3 = 843623606278030360579 = 16403765263 * 51428656333;
All six are semiprime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^5], k = 3; PrimeOmega[(#^2 + k)] == 2 && PrimeOmega[(#^3 + k)] == 2 && PrimeOmega[(#^4 + k)] == 2 && PrimeOmega[(#^5 + k)] == 2 &&  PrimeOmega[(#^6 + k)] == 2  && PrimeOmega[(#^7 + k)] == 2 &]
    Select[Range[54*10^4],Union[PrimeOmega[#^Range[2,7]+3]]=={2}&] (* Harvey P. Dale, Jul 30 2022 *)

A059582 First differences give digits of Pi = 3.1415926...

Original entry on oeis.org

1, 4, 5, 9, 10, 15, 24, 26, 32, 37, 40, 45, 53, 62, 69, 78, 81, 83, 86, 94, 98, 104, 106, 112, 116, 119, 122, 130, 133, 135, 142, 151, 156, 156, 158, 166, 174, 178, 179, 188, 195, 196, 202, 211, 214, 223, 232, 235, 242, 247, 248, 248, 253, 261, 263, 263, 272
Offset: 0

Views

Author

Rodolfo Kurchan, Feb 17 2001

Keywords

Comments

A more natural variant is given by A046974, the partial sums of the digits of Pi (A000796). Maybe the present version is motivated by the coincidence that the first four digits 1,4,5,9 are similar to the decimals .14159 of Pi. - M. F. Hasler, Jan 19 2015

Crossrefs

Programs

  • Maple
    Digits := 200: it := evalf(Pi, 200)/10: out := 1: for i from 1 to 200 do printf(`%d,`,out): out := out+floor(10*it): it := 10*it-floor(10*it): od:
  • Mathematica
    Accumulate[Join[{1},RealDigits[Pi,10,60][[1]]]] (* Harvey P. Dale, Jan 18 2015 *)
  • PARI
    { default(realprecision, 2080); a=1; x=Pi/10; for (n=0, 2000, d=floor(x); x=(x-d)*10; write("b059582.txt", n, " ", a+=d)); } \\ Harry J. Smith, Jun 28 2009

Extensions

More terms from James Sellers, Feb 19 2001
Showing 1-2 of 2 results.