A108827 Numbers k that divide the sum of the digits of k^k.
1, 2, 3, 9, 18, 27, 54, 90, 108, 163, 197, 254, 432, 1292, 2202, 9648, 10347, 16596, 17203, 46188, 46992, 77121, 130082, 167410, 216546, 596277
Offset: 1
Examples
3^3 = 27; 2 + 7 = 9; 9 mod 3 = 0. 9^9 = 387420489; 3 + 8 + 7 + 4 + 2 + 4 + 8 + 9 = 45; 45 mod 9 = 0. 432 is a term because the sum of the digits of 432^432 = 5184 is divisible by 432.
Programs
-
Maple
a:=proc(n) local nn: nn:=convert(n^n,base,10): if type(add(nn[j],j=1..nops(nn))/n, integer)=true then n else fi end: seq(a(n),n=1..2000); # Emeric Deutsch
-
Mathematica
Do[If[Mod[Plus @@ IntegerDigits[n^n], n] == 0, Print[n]], {n, 1, 10000}] Select[Range[600000],Divisible[Total[IntegerDigits[#^#]],#]&] (* Harvey P. Dale, Jan 28 2017 *)
Extensions
a(16)-a(19) from Simon Nickerson (simonn(AT)maths.bham.ac.uk) and Emeric Deutsch, Jul 15 2005
a(20)-a(22) from Ray Chandler, Jul 25 2005
Edited by N. J. A. Sloane, Apr 27 2008 at the suggestion of Stefan Steinerberger
a(23) from Robert G. Wilson v, May 17 2008
a(24) from Robert G. Wilson v, May 19 2008
a(25)-a(26) from Lars Blomberg, Jul 09 2011
Comments