A108928 a(n) = 8*n^2 - 3.
5, 29, 69, 125, 197, 285, 389, 509, 645, 797, 965, 1149, 1349, 1565, 1797, 2045, 2309, 2589, 2885, 3197, 3525, 3869, 4229, 4605, 4997, 5405, 5829, 6269, 6725, 7197, 7685, 8189, 8709, 9245, 9797, 10365, 10949, 11549, 12165, 12797, 13445, 14109, 14789
Offset: 1
Examples
(1*3 = 3)+2 = 5; (3*5 = 15)+14 = 29; (5*7 = 35)+34 = 69; (7*9 = 63)+62 = 125; ...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[8*n^2 - 3: n in [1..50]]; // Vincenzo Librandi, Sep 05 2011
-
Maple
seq(8*n^2-3,n=1..50); # Emeric Deutsch, Aug 01 2005
-
Mathematica
8*Range[50]^2-3 (* or *) LinearRecurrence[{3,-3,1},{5,29,69},50] (* Harvey P. Dale, Jul 21 2012 *)
-
PARI
a(n)=8*n^2-3 \\ Charles R Greathouse IV, Sep 04 2011
Formula
a(n) = 2*(2*n-1)*(2*n+1)-1.
a(1)=5, a(2)=29, a(3)=69, a(n)=3*a(n-1)-3*a(n-2)+a(n-3). - Harvey P. Dale, Jul 21 2012
From G. C. Greubel, Jul 15 2017:(Start)
G.f.: x*(-5 - 14*x + 3*x^2)/(-1 + x)^3.
E.g.f.: (8*x^2 + 8*x - 3)*exp(x) + 3. (End)
Extensions
More terms from Emeric Deutsch, Aug 01 2005
Comments