A108981 a(n) = 3a(n-1) + 4a(n-2), a(0) = 1, a(1) = 5.
1, 5, 19, 77, 307, 1229, 4915, 19661, 78643, 314573, 1258291, 5033165, 20132659, 80530637, 322122547, 1288490189, 5153960755, 20615843021, 82463372083, 329853488333, 1319413953331, 5277655813325, 21110623253299
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Index entries for linear recurrences with constant coefficients, signature (3,4).
Programs
-
Magma
I:=[1,5]; [n le 2 select I[n] else 3*Self(n-1)+4*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Feb 17 2014
-
Mathematica
LinearRecurrence[{3,4},{1,5},30] (* Harvey P. Dale, Feb 16 2014 *)
-
PARI
Vec((1+2*x)/(1+x)/(1-4*x)+O(x^99)) \\ Charles R Greathouse IV, Jan 11 2012
-
Python
def A108981(n): return ((4<<(m:=n+1<<1))|2)//5-((1<
>1 # Chai Wah Wu, Apr 22 2025
Formula
Inverse binomial transform of A003948.
a(2n) = 4a(2n-1) - 1; a(2n+1) = 4a(2n) + 1.
O.g.f.: (1+2*x)/((1+x)(1-4*x)). - R. J. Mathar, Apr 02 2008
Sum_{k=0..n} a(k) = A037481(n+1). - Philippe Deléham, Apr 15 2008
Extensions
Corrected by T. D. Noe, Nov 07 2006
Edited by N. J. A. Sloane at the suggestion of R. J. Mathar, Apr 14 2008
Comments