A109001 Triangle, read by rows, where g.f. of row n equals the product of (1-x)^n and the g.f. of the coordination sequence for root lattice B_n, for n >= 0.
1, 1, 1, 1, 6, 1, 1, 15, 23, 1, 1, 28, 102, 60, 1, 1, 45, 290, 402, 125, 1, 1, 66, 655, 1596, 1167, 226, 1, 1, 91, 1281, 4795, 6155, 2793, 371, 1, 1, 120, 2268, 12040, 23750, 18888, 5852, 568, 1, 1, 153, 3732, 26628, 74574, 91118, 49380, 11124, 825, 1, 1, 190, 5805, 53544, 201810, 350196, 291410, 114600, 19629, 1150, 1
Offset: 0
Examples
G.f.s of initial rows of square array A108998 are: (1), (1 + x)/(1-x), (1 + 6*x + x^2)/(1-x)^2; (1 + 15*x + 23*x^2 + x^3)/(1-x)^3; (1 + 28*x + 102*x^2 + 60*x^3 + x^4)/(1-x)^4. Triangle begins: 1; 1, 1; 1, 6, 1; 1, 15, 23, 1; 1, 28, 102, 60, 1; 1, 45, 290, 402, 125, 1; 1, 66, 655, 1596, 1167, 226, 1; 1, 91, 1281, 4795, 6155, 2793, 371, 1; 1, 120, 2268, 12040, 23750, 18888, 5852, 568, 1; 1, 153, 3732, 26628, 74574, 91118, 49380, 11124, 825, 1;
Links
- Muniru A Asiru, Rows n=0..100 of triangle, flattened
- R. Bacher, P. de la Harpe and B. Venkov, Séries de croissance et séries d'Ehrhart associées aux réseaux de racines, C. R. Acad. Sci. Paris, 325 (Series 1) (1997), 1137-1142.
Crossrefs
Programs
-
GAP
Flat(List([0..10],n->List([0..n],k->Binomial(2*n+1,2*k)-2*n*Binomial(n-1,k-1)))); # Muniru A Asiru, Dec 14 2018
-
Mathematica
T[n_, k_] := Binomial[2n+1, 2k] - 2n * Binomial[n-1, k-1]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Dec 14 2018 *)
-
PARI
T(n,k)=binomial(2*n+1,2*k)-2*n*binomial(n-1,k-1)
Formula
T(n, k) = C(2*n+1, 2*k) - 2*n*C(n-1, k-1).
Row sums are 2^n*(2^n - n) for n >= 0.
G.f. for coordination sequence of B_n lattice: ((Sum_{i=0..n} binomial(2*n+1, 2*i)*z^i) - 2*n*z*(1+z)^(n-1))/(1-z)^n. [Bacher et al.]
Comments