cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A109001 Triangle, read by rows, where g.f. of row n equals the product of (1-x)^n and the g.f. of the coordination sequence for root lattice B_n, for n >= 0.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 15, 23, 1, 1, 28, 102, 60, 1, 1, 45, 290, 402, 125, 1, 1, 66, 655, 1596, 1167, 226, 1, 1, 91, 1281, 4795, 6155, 2793, 371, 1, 1, 120, 2268, 12040, 23750, 18888, 5852, 568, 1, 1, 153, 3732, 26628, 74574, 91118, 49380, 11124, 825, 1, 1, 190, 5805, 53544, 201810, 350196, 291410, 114600, 19629, 1150, 1
Offset: 0

Views

Author

Paul D. Hanna, Jun 17 2005

Keywords

Comments

Compare to triangle A108558, where row n equals the (n+1)-th differences of the crystal ball sequence for D_n lattice.

Examples

			G.f.s of initial rows of square array A108998 are:
  (1),
  (1 + x)/(1-x),
  (1 + 6*x + x^2)/(1-x)^2;
  (1 + 15*x + 23*x^2 + x^3)/(1-x)^3;
  (1 + 28*x + 102*x^2 + 60*x^3 + x^4)/(1-x)^4.
Triangle begins:
  1;
  1,   1;
  1,   6,    1;
  1,  15,   23,     1;
  1,  28,  102,    60,     1;
  1,  45,  290,   402,   125,     1;
  1,  66,  655,  1596,  1167,   226,     1;
  1,  91, 1281,  4795,  6155,  2793,   371,     1;
  1, 120, 2268, 12040, 23750, 18888,  5852,   568,   1;
  1, 153, 3732, 26628, 74574, 91118, 49380, 11124, 825, 1;
		

Crossrefs

Cf. A108998, A108999, A109000, A022144 (row 2), A022145 (row 3), A022146 (row 4), A022147 (row 5), A022148 (row 6), A022149 (row 7), A022150 (row 8), A022151 (row 9), A022152 (row 10), A022153 (row 11), A022154 (row 12).

Programs

  • GAP
    Flat(List([0..10],n->List([0..n],k->Binomial(2*n+1,2*k)-2*n*Binomial(n-1,k-1)))); # Muniru A Asiru, Dec 14 2018
  • Mathematica
    T[n_, k_] := Binomial[2n+1, 2k] - 2n * Binomial[n-1, k-1]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Dec 14 2018 *)
  • PARI
    T(n,k)=binomial(2*n+1,2*k)-2*n*binomial(n-1,k-1)
    

Formula

T(n, k) = C(2*n+1, 2*k) - 2*n*C(n-1, k-1).
Row sums are 2^n*(2^n - n) for n >= 0.
G.f. for coordination sequence of B_n lattice: ((Sum_{i=0..n} binomial(2*n+1, 2*i)*z^i) - 2*n*z*(1+z)^(n-1))/(1-z)^n. [Bacher et al.]