cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A108998 Square array, read by antidiagonals, where row n equals the coordination sequence of B_n lattice, for n >= 0.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 8, 2, 0, 1, 18, 16, 2, 0, 1, 32, 74, 24, 2, 0, 1, 50, 224, 170, 32, 2, 0, 1, 72, 530, 768, 306, 40, 2, 0, 1, 98, 1072, 2562, 1856, 482, 48, 2, 0, 1, 128, 1946, 6968, 8130, 3680, 698, 56, 2, 0, 1, 162, 3264, 16394, 28320, 20082, 6432, 954, 64, 2, 0
Offset: 0

Views

Author

Paul D. Hanna, Jun 17 2005

Keywords

Comments

Compare with A108553, where row n equals the crystal ball sequence for D_n lattice.

Examples

			Square array begins:
  1,  0,    0,     0,     0,      0,      0,      0, ...
  1,  2,    2,     2,     2,      2,      2,      2, ...
  1,  8,   16,    24,    32,     40,     48,     56, ...
  1, 18,   74,   170,   306,    482,    698,    954, ...
  1, 32,  224,   768,  1856,   3680,   6432,  10304, ...
  1, 50,  530,  2562,  8130,  20082,  42130,  78850, ...
  1, 72, 1072,  6968, 28320,  85992, 214864, 467544, ...
  1, 98, 1946, 16394, 83442, 307314, 907018, ...
Product of the g.f. of row n and (1-x)^n generates the rows of triangle A109001:
  1;
  1,  1;
  1,  6,   1;
  1, 15,  23,    1;
  1, 28, 102,   60,    1;
  1, 45, 290,  402,  125,   1;
  1, 66, 655, 1596, 1167, 226, 1; ...
		

Crossrefs

Cf. A108999 (main diagonal), A109000 (antidiagonal sums), A109001, A022144 (row 2), A022145 (row 3), A022146 (row 4), A022147 (row 5), A022148 (row 6), A022149 (row 7), A022150 (row 8), A022151 (row 9), A022152 (row 10), A022153 (row 11), A022154 (row 12).

Programs

  • PARI
    T(n,k)=if(n<0 || k<0,0,sum(j=0,k, binomial(n+k-j-1,k-j)*(binomial(2*n+1,2*j)-2*n*binomial(n-1,j-1))))

Formula

T(n, k) = Sum_{j=0..k} C(n+k-j-1, k-j)*(C(2*n+1, 2*j)-2*n*C(n-1, j-1)) for n >= k >= 0.
G.f. for coordination sequence of B_n lattice: ((Sum_{i=0..n} binomial(2*n+1, 2*i)*z^i)-2*n*z*(1+z)^(n-1))/(1-z)^n. [Bacher et al.]

A108999 Main diagonal of square array A108998, in which row n equals the coordination sequence of B_n lattice.

Original entry on oeis.org

1, 2, 16, 170, 1856, 20082, 214864, 2282394, 24165120, 255708578, 2708805776, 28752157898, 305908697152, 3262741154194, 34882914424528, 373781033269306, 4013444615232512, 43174945822078530, 465247083731404048
Offset: 0

Views

Author

Paul D. Hanna, Jun 17 2005

Keywords

Comments

Compare to diagonal A108554 of square array A108553, in which row n equals the crystal ball sequence for D_n lattice.

Crossrefs

Programs

  • GAP
    List([0..20],n->Sum([0..n],j->Binomial(2*n-j-1,n-j)*(Binomial(2*n+1,2*j)-2*n*Binomial(n-1,j-1)))); # Muniru A Asiru, Nov 21 2018
  • Mathematica
    a[n_]:= Sum[Binomial[2*n-j-1, n-j]*(Binomial[2*n+1, 2*j] - 2*n*Binomial[n-1, j-1]), {j,0,n}]; Array[a, 20, 0] (* Stefano Spezia, Nov 21 2018 *)
  • PARI
    {a(n)=sum(j=0,n, binomial(2*n-j-1,n-j)*(binomial(2*n+1,2*j)-2*n*binomial(n-1,j-1)))}
    

Formula

a(n) = Sum_{j=0..n} C(2*n-j-1, n-j)*( C(2*n+1, 2*j) - 2*n*C(n-1, j-1) ).
a(n) ~ phi^(5*n+1) / (2*5^(1/4)*sqrt(Pi*n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Aug 31 2025

A109000 Antidiagonal sums of square array A108998, in which row n equals the coordination sequence of B_n lattice.

Original entry on oeis.org

1, 1, 3, 11, 37, 133, 479, 1719, 6121, 21609, 75675, 263171, 909899, 3130963, 10730891, 36639987, 124528283, 420319907, 1403656123, 4615627555, 14868713515, 46702912307, 142489152555, 421113970835, 1203581558011
Offset: 0

Views

Author

Paul D. Hanna, Jun 17 2005

Keywords

Comments

Limit a(n+1)/a(n) ~ 3.3829757679..., real root of cubic (1+x+3*x^2-x^3). Compare to antidiagonal sums A108555 of square array A108553, in which row n equals the crystal ball sequence for D_n lattice.

Crossrefs

Programs

  • PARI
    {a(n)=sum(k=0,n,sum(j=0,k, binomial(n-j-1,k-j)*(binomial(2*n-2*k+1,2*j)-2*(n-k)*binomial(n-k-1,j-1))))}

Formula

a(n) = Sum_{k=0..n} Sum_{j=0..k} C(n-j-1, k-j) * (C(2*n-2*k+1, 2*j)-2*(n-k)*C(n-k-1, j-1)).
Showing 1-3 of 3 results.