cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A109014 a(n) = gcd(n,11).

Original entry on oeis.org

11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A109004.

Programs

  • Mathematica
    GCD[Range[0,100],11] (* Harvey P. Dale, May 14 2022 *)
  • Python
    from math import gcd
    def a(n): return gcd(n, 11)
    print([a(n) for n in range(99)]) # Michael S. Branicky, Nov 01 2021

Formula

a(n) = 1 + 10*[11|n], where [x|y] = 1 when x divides y, 0 otherwise.
a(n) = a(n-11).
Multiplicative with a(p^e, 11) = gcd(p^e, 11). - David W. Wilson, Jun 12 2005
Dirichlet g.f.: zeta(s)*(1+10/11^s). - R. J. Mathar, Apr 08 2011
a(n) = ((n-1) mod 2 + 1)*(10*floor(((n-1) mod 11)/10) + 1). - Gary Detlefs, Dec 28 2011