cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A109033 Number of permutations in S_n avoiding the patterns 1342 and 2143.

Original entry on oeis.org

1, 1, 2, 6, 22, 88, 368, 1584, 6968, 31192, 141656, 651136, 3023840, 14166496, 66876096, 317809216, 1519163456, 7299577216, 35237444736, 170812433536, 831127053696, 4057858988416, 19873611712896, 97609555091456
Offset: 0

Views

Author

Emeric Deutsch, Jun 16 2005

Keywords

Comments

Also number of permutations in S_n avoiding the patterns 3142 and 2341. Partial sums of A109034.
Hankel transform is 2^floor(n^2/3) (see A134751). - Paul Barry, Dec 15 2008

Examples

			a(4) = 22 because all permutations of 1234 qualify with the exception of 1342 and 2143.
		

Crossrefs

Cf. A109034.

Programs

  • Maple
    G:=(1-sqrt(1-8*x+16*x^2-8*x^3))/4/x/(1-x): Gser:=series(G,x=0,30): 1,seq(coeff(Gser,x^n),n=1..27);
  • Mathematica
    CoefficientList[Series[(1-Sqrt[1-8x+16x^2-8x^3])/(4x(1-x)), {x,0,30}], x] (* Harvey P. Dale, Jul 02 2011 *)

Formula

G.f.: (1-sqrt(1-8*x+16*x^2-8*x^3))/(4*x*(1-x)).
From Paul Barry, Dec 15 2008: (Start)
G.f.: (1-x)*c(2*x*(1-x)^2), where c(x) is the g.f. of A000108;
a(n) = sum{k=0..n, (-1)^(n-k)*C(2k+1,n-k)*2^k*A000108(k)}. (End)
G.f.: 1/(1-x/(1-x/(1-2x/(1-x/(1-x/(1-2x/(1-x/(1-x/(1-2x...... (continued fraction). - Paul Barry, Dec 15 2008
a(n) = Sum_{k=0..n} A091866(n,k)*2^(n-k). - Philippe Deléham, Nov 27 2009
Recurrence: (n+1)*a(n) = 3*(3*n-1)*a(n-1) - 12*(2*n-3)*a(n-2) + 12*(2*n-5) * a(n-3) - 4*(2*n-7)*a(n-4). - Vaclav Kotesovec, Oct 24 2012
a(n) ~ sqrt(5-sqrt(5))*(sqrt(5)+3)^n/(2*sqrt(2*Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 24 2012. Equivalently, a(n) ~ 5^(1/4) * 2^(n-1) * phi^(2*n - 1/2) / (sqrt(Pi) * n^(3/2)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 10 2021
G.f. A(x) satisfies: A(x) = (1 - x) * (1 + 2*x*A(x)^2). - Ilya Gutkovskiy, Jun 30 2020