cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A109055 To compute a(n) we first write down 3^n 1's in a row. Each row takes the rightmost 3rd part of the previous row and each element in it equals sum of the elements of the previous row starting with the first of the rightmost 3rd part. The single element in the last row is a(n).

Original entry on oeis.org

1, 1, 3, 24, 541, 35649, 6979689, 4085743032, 7166723910237, 37698139930450365, 594816080266215640710, 28154472624850002001979592, 3997853576535778666975681355079, 1703042427700923785323670557504832751, 2176429411666209822350337722381643148477248
Offset: 0

Views

Author

Augustine O. Munagi, Jun 17 2005

Keywords

Comments

Comment from Franklin T. Adams-Watters, Jul 13 2006: This is the number of subpartitions of the sequence 3^n-1. As such it can also be computed adding forward, with 3^n terms in the n-th line:
1...........................................................................
1.1 1.......................................................................
1.2.3.3..3..3..3..3..3......................................................
1.3.6.9.12.15.18.21.24.24.24.24.24.24.24.24.24.24.24.24.24.24.24.24.24.24.24

Examples

			For example, for n=3 the array looks like this:
1..1..1..1..1........1..1..1..1..1..1..1..1..1..1
........................1..2..3..4..5..6..7..8..9
..........................................7.15.24
...............................................24
Therefore a(3)=24.
		

Crossrefs

Programs

  • Maple
    proc(n::nonnegint) local f,a; if n=0 or n=1 then return 1; end if; f:=L->[seq(add(L[i],i=2*nops(L)/3+1..j),j=2*nops(L)/3+1..nops(L))]; a:=f([seq(1,j=1..3^n)]); while nops(a)>3 do a:=f(a) end do; a[3]; end proc;
  • Mathematica
    A[n_, k_] := A[n, k] = If[n == 0, 1, -Sum[A[j, k]*(-1)^(n - j)*Binomial[If[j == 0, 1, k^j], n - j], {j, 0, n - 1}]];
    a[n_] := A[n, 3];
    Table[a[n], {n, 0, 14}] (* Jean-François Alcover, Apr 01 2024, after Alois P. Heinz in A355576 *)

Extensions

More terms from Paul D. Hanna