A355576 Number A(n,k) of n-tuples (p_1, p_2, ..., p_n) of positive integers such that p_{i-1} <= p_i <= k^(i-1); square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 3, 7, 1, 0, 1, 1, 4, 24, 44, 1, 0, 1, 1, 5, 58, 541, 516, 1, 0, 1, 1, 6, 115, 3236, 35649, 11622, 1, 0, 1, 1, 7, 201, 12885, 713727, 6979689, 512022, 1, 0, 1, 1, 8, 322, 39656, 7173370, 627642640, 4085743032, 44588536, 1, 0
Offset: 0
Examples
A(2,3) = 3: (1,1), (1,2), (1,3). A(3,2) = 7: (1,1,1), (1,1,2), (1,1,3), (1,1,4), (1,2,2), (1,2,3), (1,2,4). A(3,3) = 24: (1,1,1), (1,1,2), (1,1,3), (1,1,4), (1,1,5), (1,1,6), (1,1,7), (1,1,8), (1,1,9), (1,2,2), (1,2,3), (1,2,4), (1,2,5), (1,2,6), (1,2,7), (1,2,8), (1,2,9), (1,3,3), (1,3,4), (1,3,5), (1,3,6), (1,3,7), (1,3,8), (1,3,9). Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, 1, 1, ... 0, 1, 2, 3, 4, 5, 6, ... 0, 1, 7, 24, 58, 115, 201, ... 0, 1, 44, 541, 3236, 12885, 39656, ... 0, 1, 516, 35649, 713727, 7173370, 46769781, ... 0, 1, 11622, 6979689, 627642640, 19940684251, 330736663032, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..43, flattened
Crossrefs
Programs
-
Maple
A:= proc(n, k) option remember; `if`(n=0, 1, -add( A(j, k)*(-1)^(n-j)*binomial(k^j, n-j), j=0..n-1)) end: seq(seq(A(n, d-n), n=0..d), d=0..12);
-
Mathematica
A[n_, k_] := A[n, k] = If[n==0, 1, -Sum[A[j, k]*(-1)^(n-j)*Binomial[If[j==0, 1, k^j], n-j], {j, 0, n-1}]]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Sep 21 2022, after Alois P. Heinz *)
Comments