cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A109067 3-almost primes of the form semiprime + 1.

Original entry on oeis.org

27, 50, 52, 63, 66, 70, 75, 78, 92, 116, 124, 130, 147, 170, 186, 188, 195, 207, 222, 236, 238, 255, 266, 268, 275, 279, 290, 292, 310, 322, 356, 363, 366, 387, 399, 404, 412, 418, 423, 428, 438, 452, 455, 470, 474, 483, 494, 498, 506, 518, 530, 534, 539, 555
Offset: 1

Views

Author

Jonathan Vos Post, Aug 24 2005

Keywords

Examples

			a(1) = 27 because (2*13+1)=(3^3) = 27.
a(2) = 50 because (7*7+1)=(2*5^2) = 50.
a(3) = 52 because (3*17+1)=(2^2*13) = 52.
a(4) = 63 because (2*31+1)=(3^2*7) = 63.
a(5) = 66 because (5*13+1)=(2*3*11) = 66.
a(6) = 70 because (3*23+1)=(2*5*7) = 70.
a(7) = 75 because (2*37+1)=(3*5^2) = 75.
a(8) = 78 because (7*11+1)=(2*3*13) = 78.
		

Crossrefs

Primes are in A000040. Semiprimes are in A001358. 3-almost primes are in A014612.
Primes of the form semiprime + 1 are in A005385 (safe primes).
Semiprimes of the form semiprime + 1 are in A109373.
3-almost primes of the form semiprime + 1 are in this sequence.
4-almost primes of the form semiprime + 1 are in A109287.
5-almost primes of the form semiprime + 1 are in A109383.
Least n-almost prime of the form semiprime + 1 are in A128665.

Programs

  • Mathematica
    f[n_] := Plus @@ Last /@ FactorInteger[n];Select[Range[600], f[ # ] == 3 && f[ # - 1] == 2 &] (* Ray Chandler, Mar 20 2007 *)
    Select[Select[Range[600],PrimeOmega[#]==2&]+1,PrimeOmega[#]==3&] (* Harvey P. Dale, Nov 24 2013 *)
  • PARI
    list(lim)=my(v=List(),t); forprime(p=2,lim, forprime(q=2,min(p,lim\p), if(bigomega(t=p*q+1)==3, listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 01 2017

Formula

a(n) is in this sequence iff a(n) is in A014612 and a(n)-1 is in A001358.

Extensions

Edited and extended by Ray Chandler, Mar 20 2007