cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A005156 Number of alternating sign 2n+1 X 2n+1 matrices symmetric about the vertical axis (VSASM's); also 2n X 2n off-diagonally symmetric alternating sign matrices (OSASM's).

Original entry on oeis.org

1, 1, 3, 26, 646, 45885, 9304650, 5382618660, 8878734657276, 41748486581283118, 559463042542694360707, 21363742267675013243931852, 2324392978926652820310084179576, 720494439459132215692530771292602232, 636225819409712640497085074811372777428304
Offset: 0

Views

Author

Keywords

Comments

a(n+1) is the Hankel transform of A006013. - Paul Barry, Jan 20 2007
a(n+1) is the Hankel transform of A025174(n+1). - Paul Barry, Apr 14 2008

References

  • D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999; p. 201, VS(2n+1).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A005156 := proc(n) local i,j,t1; (-3)^(n^2)*mul( mul( (6*j-3*i+1)/(2*j-i+2*n+1), j=1..n ),i=1..2*n+1); end;
  • Mathematica
    Table[1/2^n Product[((6k-2)!(2k-1)!)/((4k-1)!(4k-2)!),{k,n}],{n,0,20}] (* Harvey P. Dale, Jul 07 2011 *)
  • PARI
    a(n) = prod(k = 0, n-1, (3*k+2)*(6*k+3)!*(2*k+1)!/((4*k+2)!*(4*k+3)!));
    vector(15, n, a(n-1))  \\ Gheorghe Coserea, May 30 2016

Formula

The formula for a(n) (see the Maple code) was conjectured by Robbins and proved by Kuperberg.
a(n) = (1/2^n) * Product_{k=1..n} ((6k-2)!(2k-1)!)/((4k-1)!(4k-2)!) (Razumov/Stroganov).
a(n) ~ exp(1/72) * Pi^(1/6) * 3^(3*n^2 + 3*n/2 + 11/72) / (A^(1/6) * GAMMA(1/3)^(1/3) * n^(5/72) * 2^(4*n^2 + 3*n + 1/9)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Mar 01 2015

A134357 Denominator of binomial(6*n-2,2*n)/(2*binomial(4*n-1,2*n)).

Original entry on oeis.org

2, 1, 1, 3, 13, 34, 133, 115, 435, 59334, 2294, 19721, 195693, 4060189, 12746447, 331303, 25369351, 4959422, 11092118, 28745223797, 16310849170, 14814154260, 348379527681, 263145320733, 1493627665569, 100023828627, 531705615333, 156537259557, 1047443521637
Offset: 0

Views

Author

N. J. A. Sloane, May 04 2008

Keywords

Comments

It is conjectured that binomial(6*n-2,2*n)/(2*binomial(4*n-1,2*n)) = A005156(n+1)/A005156(n).

Examples

			1/2, 1, 3, 26/3, 323/13, 2415/34, 26970/133, 66526/115, 717541/435, 278992987/59334, 30741431/2294, ...
		

References

  • D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999; see conjecture (6.18).

Crossrefs

Programs

  • Mathematica
    Table[Binomial[6n-2,2n]/(2Binomial[4n-1,2n]),{n,0,30}]//Denominator (* Harvey P. Dale, Feb 05 2025 *)

Extensions

Changed numerator to denominator in title, Arvind Ayyer, Jan 29 2012
Showing 1-2 of 2 results.