A109113 a(n) = 6*a(n-1) + 3*a(n-2), a(0)=2, a(1)=14.
2, 14, 90, 582, 3762, 24318, 157194, 1016118, 6568290, 42458094, 274453434, 1774094886, 11467929618, 74129862366, 479182963050, 3097487365398, 20022473081538, 129427300585422, 836631222757146, 5408069238299142
Offset: 0
References
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 302, P_{15}).
Links
- Index entries for linear recurrences with constant coefficients, signature (6,3).
Crossrefs
Cf. A099842.
Programs
-
Maple
a[0]:=2: a[1]:=14: for n from 2 to 25 do a[n]:=6*a[n-1]+3*a[n-2] od: seq(a[n],n=0..22);
-
Mathematica
CoefficientList[Series[2*(1 + x)/(1 - 6*x - 3*x^2), {x, 0, 20}], x] (* Wesley Ivan Hurt, Jan 01 2024 *)
-
PARI
Vec(2*(1+x)/(1-6*x-3*x^2)+O(x^99)) \\ Charles R Greathouse IV, May 06 2014
Formula
a(n) = ((3 + 2*sqrt(3))^(n+1) + (3 - 2*sqrt(3))^(n+1))/3.
G.f.: 2*(1+z)/(1 - 6*z - 3*z^2).
a(n) = 2*abs(A099842(n)). - F. Chapoton, May 06 2014
E.g.f.: 2*exp(3*x)*(3*cosh(2*sqrt(3)*x) + 2*sqrt(3)*sinh(2*sqrt(3)*x))/3. - Stefano Spezia, Apr 08 2025
Comments