A109177
Eight-digit primes which use each of 0-to-7 decimal digits exactly once.
Original entry on oeis.org
10235647, 10236547, 10243567, 10243657, 10245637, 10247563, 10254367, 10254763, 10256347, 10256473, 10257463, 10264357, 10264537, 10346257, 10356427, 10364527, 10425367, 10425637, 10425673, 10426357, 10426753
Offset: 1
-
Take[FromDigits/@Select[Permutations[Range[0,7]],First[#]!=0&&PrimeQ[ FromDigits[ #]]&],50] (* Harvey P. Dale, Aug 16 2011 *)
A109176
Five-digit primes which use each of the decimal digits 0 through 4 exactly once.
Original entry on oeis.org
10243, 12043, 20143, 20341, 20431, 23041, 24103, 30241, 32401, 40123, 40213, 40231, 41023, 41203, 42013, 43201
Offset: 1
-
Select[FromDigits/@Permutations[{0,1,2,3,4}],#>10^4&&PrimeQ[#]&] (* James C. McMahon, Mar 06 2024 *)
A187796
Primes whose digits are a permutation of (0, ..., m) for some m.
Original entry on oeis.org
10243, 12043, 20143, 20341, 20431, 23041, 24103, 30241, 32401, 40123, 40213, 40231, 41023, 41203, 42013, 43201, 10235647, 10236547, 10243567, 10243657, 10245637, 10247563, 10254367, 10254763, 10256347, 10256473, 10257463, 10264357
Offset: 1
As explained in the comments, there cannot be a term with fewer than 5 digits. The smallest number whose digits are a permutation of (0, ..., 4) is 10234, but this is even and cannot be a prime. The next larger one happens to be prime, so that's a(1) = 10243.
It is also explained in the comments why there's no term larger than 76543210. The largest odd numbers of the given form below this limit are of the form 7654xyz1 and 7654abc3, with xyz resp. abc permutations of 023 resp. 012. It happens that the case xyz=023 is the only one which yields a prime: this is the largest term of this sequence, a(2684) = 76540231 = A109178(1).
-
Select[Prime@ Range[10^6], {1} == Union@ Prepend[Differences@ #, 1 + First@ #] &@ Sort@ IntegerDigits@ # &] (* Michael De Vlieger, Aug 20 2017 *)
Table[Select[FromDigits /@ Permutations[Range[0, n]], PrimeQ[ #] && DigitCount[ #, 10, 0] == 1 &], {n, 9}] // Flatten (* Harvey P. Dale, Jan 01 2020 *)
-
forprime(p=2,,#vecsort(t=digits(p),,8)==#t && #t==vecmax(t)+1 && print1(p","))
A109075
Number of primes which use each of 0-to-n decimal digits exactly once.
Original entry on oeis.org
0, 0, 0, 0, 16, 0, 0, 2668, 0, 0
Offset: 0
A109179
Eight-digit primes reverse of which is also prime such that each of decimal digits 0-to-7 used just once.
Original entry on oeis.org
10243657, 10247563, 10254367, 10254763, 10264537, 10356427, 10432567, 10452367, 10457263, 10467253, 10475263, 10562437, 10574623, 10654327, 10725643, 12067543, 12306457, 12360457, 12364507, 12460753, 12530647
Offset: 1
10243657 and its reverse 76534201 are both primes which use decimal digits 0-to-7 exactly once.
Showing 1-5 of 5 results.
Comments