A109188 Number of (1,0) steps in all Grand Motzkin paths of length n.
1, 2, 9, 28, 95, 306, 987, 3144, 9963, 31390, 98483, 307836, 959257, 2981174, 9243405, 28601712, 88342659, 272428758, 838903371, 2579937060, 7924966749, 24317716038, 74546117121, 228317474952, 698708409525, 2136597743826
Offset: 1
Keywords
Examples
a(3)=9 because we have the following 7 (=A002426(3)) Grand Motzkin paths of length 3: hhh, hud, hdu, udh, duh, uhd and dhu; they have a total of 9 h-steps.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Programs
-
Maple
g:=z*(1-z)/(1-2*z-3*z^2)^(3/2): gser:=series(g,z=0,33): seq(coeff(gser,z^n),n=1..30); a := n -> n*hypergeom([1-n/2, 1/2-n/2], [1], 4): seq(simplify(a(n)), n=1..26); # Peter Luschny, Sep 18 2014
-
Mathematica
Rest[CoefficientList[Series[x*(1-x)/(1-2*x-3*x^2)^(3/2), {x, 0, 20}], x]] (* Vaclav Kotesovec, Sep 18 2014 *)
-
PARI
Vec(z*(1-z)/(1-2*z-3*z^2)^(3/2) + O(z^50)) \\ G. C. Greubel, Jan 31 2017
Formula
G.f.: x*(1 - x)/(1 - 2*x - 3*x^2)^(3/2).
a(n) = n*A002426(n-1). - Paul Barry, Apr 19 2008, corrected Nov 09 2021
E.g.f.: a(n) = n! * [x^n] exp(x)*((1 + x)*BesselI(0, 2*x) + 2*x*BesselI(1, 2*x)). - Peter Luschny, Aug 25 2012
D-finite with recurrence (-n+1)*a(n) + (3*n-4)*a(n-1) + (n+5)*a(n-2) + 3*(-n+2)*a(n-3) = 0. - R. J. Mathar, Nov 26 2012
a(n) = n*hypergeom([1-n/2, 1/2-n/2], [1], 4) . - Peter Luschny, Sep 18 2014
a(n) ~ 3^(n-1/2)*sqrt(n)/(2*sqrt(Pi)). - Vaclav Kotesovec, Sep 18 2014
Comments