cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A109188 Number of (1,0) steps in all Grand Motzkin paths of length n.

Original entry on oeis.org

1, 2, 9, 28, 95, 306, 987, 3144, 9963, 31390, 98483, 307836, 959257, 2981174, 9243405, 28601712, 88342659, 272428758, 838903371, 2579937060, 7924966749, 24317716038, 74546117121, 228317474952, 698708409525, 2136597743826
Offset: 1

Views

Author

Emeric Deutsch, Jun 21 2005

Keywords

Comments

A Grand Motzkin path is a path in the half-plane x>=0, starting at (0,0), ending at (n,0) and consisting of steps u=(1,1), d=(1,-1) and h=(1,0).

Examples

			a(3)=9 because we have the following 7 (=A002426(3)) Grand Motzkin paths of length 3: hhh, hud, hdu, udh, duh, uhd and dhu; they have a total of 9 h-steps.
		

Crossrefs

Programs

  • Maple
    g:=z*(1-z)/(1-2*z-3*z^2)^(3/2): gser:=series(g,z=0,33): seq(coeff(gser,z^n),n=1..30);
    a := n -> n*hypergeom([1-n/2, 1/2-n/2], [1], 4):
    seq(simplify(a(n)), n=1..26); # Peter Luschny, Sep 18 2014
  • Mathematica
    Rest[CoefficientList[Series[x*(1-x)/(1-2*x-3*x^2)^(3/2), {x, 0, 20}], x]] (* Vaclav Kotesovec, Sep 18 2014 *)
  • PARI
    Vec(z*(1-z)/(1-2*z-3*z^2)^(3/2) + O(z^50)) \\ G. C. Greubel, Jan 31 2017

Formula

G.f.: x*(1 - x)/(1 - 2*x - 3*x^2)^(3/2).
a(n) = n*A002426(n-1). - Paul Barry, Apr 19 2008, corrected Nov 09 2021
E.g.f.: a(n) = n! * [x^n] exp(x)*((1 + x)*BesselI(0, 2*x) + 2*x*BesselI(1, 2*x)). - Peter Luschny, Aug 25 2012
D-finite with recurrence (-n+1)*a(n) + (3*n-4)*a(n-1) + (n+5)*a(n-2) + 3*(-n+2)*a(n-3) = 0. - R. J. Mathar, Nov 26 2012
a(n) = n*hypergeom([1-n/2, 1/2-n/2], [1], 4) . - Peter Luschny, Sep 18 2014
a(n) ~ 3^(n-1/2)*sqrt(n)/(2*sqrt(Pi)). - Vaclav Kotesovec, Sep 18 2014