A037965
a(n) = n*binomial(2*n-2, n-1).
Original entry on oeis.org
0, 1, 4, 18, 80, 350, 1512, 6468, 27456, 115830, 486200, 2032316, 8465184, 35154028, 145608400, 601749000, 2481880320, 10218366630, 42004911960, 172427570700, 706905276000, 2894777105220, 11841673237680, 48394276165560, 197602337462400, 806190092077500
Offset: 0
- The right-hand side of a binomial coefficient identity in H. W. Gould, Combinatorial Identities, Morgantown, 1972.
-
[0] cat [n^2*Catalan(n-1): n in [1..30]]; // G. C. Greubel, Jun 19 2022
-
a[n_]:= n*Binomial[2*n-2, n-1]; Array[a, 30, 0] (* Amiram Eldar, Mar 10 2022 *)
-
a(n) = n*binomial(2*n-2, n-1); \\ Joerg Arndt, Sep 04 2017
-
[n^2*catalan_number(n-1) for n in (0..30)] # G. C. Greubel, Jun 19 2022
A331431
Triangle read by rows: T(n,k) = (-1)^(n+k)*(n+k+1)*binomial(n,k)*binomial(n+k,k) for n >= k >= 0.
Original entry on oeis.org
1, -2, 6, 3, -24, 30, -4, 60, -180, 140, 5, -120, 630, -1120, 630, -6, 210, -1680, 5040, -6300, 2772, 7, -336, 3780, -16800, 34650, -33264, 12012, -8, 504, -7560, 46200, -138600, 216216, -168168, 51480, 9, -720, 13860, -110880, 450450, -1009008, 1261260, -823680, 218790
Offset: 0
Triangle begins:
1;
-2, 6;
3, -24, 30;
-4, 60, -180, 140;
5, -120, 630, -1120, 630;
-6, 210, -1680, 5040, -6300, 2772;
7, -336, 3780, -16800, 34650, -33264, 12012;
-8, 504, -7560, 46200, -138600, 216216, -168168, 51480;
9, -720, 13860, -110880, 450450, -1009008, 1261260, -823680, 218790;
...
- J. Ser, Les Calculs Formels des Séries de Factorielles. Gauthier-Villars, Paris, 1933, p. 93. See Table III.
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- A. Buhl, Book review: J. Ser - Les calculs formels des séries de factorielles, L'Enseignement Mathématique, 32 (1933), p. 275.
- L. A. MacColl, Review: J. Ser, Les calculs formels des séries de factorielles, Bull. Amer. Math. Soc., 41(3) (1935), p. 174.
- L. M. Milne-Thomson, Review of Les calculs formels des séries de factorielles. By J. Ser. Pp. vii, 98. 20 fr. 1933. (Gauthier-Villars), The Mathematical Gazette, Vol. 18, No. 228 (May, 1934), pp. 136-137.
- J. Ser, Les Calculs Formels des Séries de Factorielles, Gauthier-Villars, Paris, 1933 [Local copy].
- J. Ser, Les Calculs Formels des Séries de Factorielles (Annotated scans of some selected pages.)
-
[(-1)^(n+k)*(k+1)*(2*k+1)*Binomial(n+k+1,n-k)*Catalan(k): k in [0..n], n in [0..15]]; // G. C. Greubel, Mar 22 2022
-
gf := k -> (1+x)^(-2*(k+1)): ser := k -> series(gf(k), x, 32):
T := (n, k) -> ((2*k+1)!/(k!)^2)*coeff(ser(k), x, n-k):
seq(seq(T(n,k), k=0..n),n=0..7); # Peter Luschny, Jan 18 2020
S:=(n,k)->(-1)^(n+k)*(n+k+1)!/((k!)^2*(n-k)!);
rho:=n->[seq(S(n,k),k=0..n)];
for n from 0 to 14 do lprint(rho(n)); od: # N. J. A. Sloane, Jan 18 2020
-
Table[(-1)^(n+k)*(n+k+1)*Binomial[2*k,k]*Binomial[n+k,n-k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 22 2022 *)
-
flatten([[(-1)^(n+k)*(2*k+1)*binomial(2*k,k)*binomial(n+k+1,n-k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Mar 22 2022
A109187
Triangle read by rows: T(n,k) is number of Grand Motzkin paths of length n having k (1,0)-steps.
Original entry on oeis.org
1, 0, 1, 2, 0, 1, 0, 6, 0, 1, 6, 0, 12, 0, 1, 0, 30, 0, 20, 0, 1, 20, 0, 90, 0, 30, 0, 1, 0, 140, 0, 210, 0, 42, 0, 1, 70, 0, 560, 0, 420, 0, 56, 0, 1, 0, 630, 0, 1680, 0, 756, 0, 72, 0, 1, 252, 0, 3150, 0, 4200, 0, 1260, 0, 90, 0, 1, 0, 2772, 0, 11550, 0, 9240, 0, 1980, 0, 110, 0, 1
Offset: 0
T(3,1)=6 because we have hud,hdu,udh,duh,uhd,dhu, where u=(1,1),d=(1,-1), h=(1,0).
Triangle begins:
n\k [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]
[0] 1;
[1] 0, 1;
[2] 2, 0, 1;
[3] 0, 6, 0, 1;
[4] 6, 0, 12, 0, 1;
[5] 0, 30, 0, 20, 0, 1;
[6] 20, 0, 90, 0, 30, 0, 1;
[7] 0, 140, 0, 210, 0, 42, 0, 1;
[8] 70, 0, 560, 0, 420, 0, 56, 0, 1;
[9] 0, 630, 0, 1680, 0, 756, 0, 72, 0, 1;
[10] 252, 0, 3150, 0, 4200, 0, 1260, 0, 90, 0, 1;
[11] ...
From _Peter Bala_, Feb 11 2017: (Start)
The infinitesimal generator begins
0
0 0
2 0 0
0 6 0 0
-6 0 12 0 0
0 -30 0 20 0 0
80 0 -90 0 30 0 0
0 560 0 -210 0 42 0 0
-2310 0 2240 0 -420 0 56 0 0
....
and equals the generalized exponential Riordan array [log(Bessel_I(0,2x)),x], and so has integer entries. (End)
Diagonal of rational function R(x, y, t) = 1/(1 - (x^2 + t*x*y + y^2)) with respect to x,y, i.e., T(n,k) = [(xy)^n*t^k] R(x,y,t). For t=0..7 we have the diagonals:
A126869(t=0, column 0),
A002426(t=1, row sums),
A000984(t=2),
A026375(t=3),
A081671(t=4),
A098409(t=5),
A098410(t=6),
A104454(t=7).
-
G:=1/sqrt((1-t*z)^2-4*z^2):Gser:=simplify(series(G,z=0,15)): P[0]:=1: for n from 1 to 13 do P[n]:=coeff(Gser,z^n) od: for n from 0 to 13 do seq(coeff(t*P[n],t^k),k=1..n+1) od;
with(PolynomialTools): CL := p -> CoefficientList(simplify(p), x):
C := (n,x) -> binomial(2*n,n)*hypergeom([-n,-n],[-n+1/2],1/2-x/4):
seq(print(CL(C(n,x))), n=0..11); # Peter Luschny, Jan 23 2018
-
p[0] := 1; p[n_] := GegenbauerC[n, -n , -x/2];
Flatten[Table[CoefficientList[p[n], x], {n, 0, 11}]] (* Peter Luschny, Jan 23 2018 *)
-
T(n,k) = if ((n-k)%2, 0, binomial(n,k)*binomial(n-k, (n-k)/2));
concat(vector(12, n, vector(n, k, T(n-1, k-1)))) \\ Gheorghe Coserea, Sep 06 2018
A132885
Triangle read by rows: T(n,k) is the number of paths in the right half-plane from (0,0) to (n,0), consisting of steps U=(1,1), D=(1,-1), h=(1,0) and H=(2,0), having k H=(2,0) steps (0 <= k <= floor(n/2)).
Original entry on oeis.org
1, 1, 3, 1, 7, 2, 19, 9, 1, 51, 28, 3, 141, 95, 18, 1, 393, 306, 70, 4, 1107, 987, 285, 30, 1, 3139, 3144, 1071, 140, 5, 8953, 9963, 3948, 665, 45, 1, 25653, 31390, 14148, 2856, 245, 6, 73789, 98483, 49815, 11844, 1330, 63, 1, 212941, 307836, 172645, 47160
Offset: 0
T(4,1)=9 because we have hhH, hHh, Hhh, HUD, UDH, UHD, HDU, DUH and DHU.
Triangle starts:
1;
1;
3, 1;
7, 2;
19, 9, 1;
51, 28, 3;
141, 95, 18, 1;
393, 306, 70, 4;
1107, 987, 285, 30, 1;
3139, 3144, 1071, 140, 5;
-
G:=1/sqrt((1+z-t*z^2)*(1-3*z-t*z^2)): Gser:=simplify(series(G,z=0,18)): for n from 0 to 13 do P[n]:=sort(coeff(Gser,z,n)) end do: for n from 0 to 13 do seq(coeff(P[n],t,j),j=0..floor((1/2)*n)) end do; # yields sequence in triangular form
A132885 := (n,k) -> binomial(n-k,k)*hypergeom([k-n/2,k-n/2+1/2], [1], 4): seq(print(seq(round(evalf(A132885(n,k))),k=0..iquo(n,2))),n=0..9); # Peter Luschny, Sep 18 2014
-
T[n_, k_] := Binomial[n - k, k]*Hypergeometric2F1[k - n/2, k - n/2 + 1/2, 1, 4]; Table[T[n, k], {n,0,10}, {k, 0, Floor[n/2]}] // Flatten (* G. C. Greubel, Mar 01 2017 *)
A147685
Squares and centered square numbers interleaved.
Original entry on oeis.org
0, 1, 1, 5, 4, 13, 9, 25, 16, 41, 25, 61, 36, 85, 49, 113, 64, 145, 81, 181, 100, 221, 121, 265, 144, 313, 169, 365, 196, 421, 225, 481, 256, 545, 289, 613, 324, 685, 361, 761, 400, 841, 441, 925, 484, 1013, 529, 1105, 576, 1201, 625, 1301, 676, 1405, 729, 1513
Offset: 0
G.f. = x + x^2 + 5*x^3 + 4*x^4 + 13*x^5 + 9*x^6 + 25*x^7 + 16*x^8 + 41*x^9 + ...
-
A147685:=n->n^2*(1+(-1)^n)/8+(n^2+1)*(1-(-1)^n)/4: seq(A147685(n), n=0..70); # Wesley Ivan Hurt, Sep 06 2015
-
CoefficientList[Series[x (1 + x + x^2) (1 + x^2)/((1 - x)^3 (1 + x)^3), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 07 2014 *)
-
{a(n) = if( n%2, (n^2 + 1) / 2, n^2 / 4)}; /* Michael Somos, Aug 07 2014 */
A194586
Triangle read by rows, T(n,k) the coefficients of the polynomials Sum_{k=0..n} binomial(n,k)*A056040(k)*(k mod 2)*q^k.
Original entry on oeis.org
0, 0, 1, 0, 2, 0, 0, 3, 0, 6, 0, 4, 0, 24, 0, 0, 5, 0, 60, 0, 30, 0, 6, 0, 120, 0, 180, 0, 0, 7, 0, 210, 0, 630, 0, 140, 0, 8, 0, 336, 0, 1680, 0, 1120, 0, 0, 9, 0, 504, 0, 3780, 0, 5040, 0, 630, 0, 10, 0, 720, 0, 7560, 0, 16800, 0, 6300, 0, 0, 11, 0, 990, 0, 13860, 0, 46200, 0, 34650, 0, 2772, 0, 12
Offset: 0
0
0, 1
0, 2, 0
0, 3, 0, 6
0, 4, 0, 24, 0
0, 5, 0, 60, 0, 30
0, 6, 0, 120, 0, 180, 0
0, 7, 0, 210, 0, 630, 0, 140
0
q
2 q
3 q + 6 q^3
4 q + 24 q^3
5 q + 60 q^3 + 30 q^5
6 q + 120 q^3 + 180 q^5
7 q + 210 q^3 + 630 q^5 + 140 q^7
-
A194586 := proc(n,k) local j, swing; swing := n -> n!/iquo(n,2)!^2:
add(binomial(n,j)*swing(j)*q^j*(j mod 2),j=0..n); coeff(%,q,k) end:
seq(print(seq(A194586(n,k),k=0..n)),n=0..8);
-
sf[n_] := n!/Quotient[n, 2]!^2;
row[n_] := Sum[Binomial[n, j] sf[j] q^j Mod[j, 2], {j, 0, n}] // CoefficientList[#, q]& // PadRight[#, n+1]&;
Table[row[n], {n, 0, 12}] (* Jean-François Alcover, Jun 26 2019 *)
A375248
Expansion of (1 - x)/(1 - 2*x - 3*x^2)^(7/2).
Original entry on oeis.org
1, 6, 35, 168, 756, 3192, 12936, 50688, 193479, 722722, 2651649, 9581936, 34176324, 120526056, 420852204, 1456709328, 5002984791, 17062825626, 57827993685, 194871361608, 653285629920, 2179701604080, 7241015510820, 23958512912880, 78978801164445
Offset: 0
-
a[n_]:=(1+n)(2+n)(3+n)(4+n)(5+n)Hypergeometric2F1[(1-n)/2,-n/2,3,4]/120; Array[a,25,0] (* Stefano Spezia, Aug 07 2024 *)
-
my(N=30, x='x+O('x^N)); Vec((1-x)/(1-2*x-3*x^2)^(7/2))
Showing 1-7 of 7 results.
Comments