A109247 Expansion of (1 - 3*x^2 - 3*x^3 + x^4)/(1 + x^4).
1, 0, -3, -3, 0, 0, 3, 3, 0, 0, -3, -3, 0, 0, 3, 3, 0, 0, -3, -3, 0, 0, 3, 3, 0, 0, -3, -3, 0, 0, 3, 3, 0, 0, -3, -3, 0, 0, 3, 3, 0, 0, -3, -3, 0, 0, 3, 3, 0, 0, -3, -3, 0, 0, 3, 3, 0, 0, -3, -3, 0, 0, 3, 3, 0, 0, -3, -3, 0, 0, 3, 3, 0, 0, -3, -3, 0, 0, 3, 3, 0, 0, -3, -3
Offset: 0
Links
- Antti Karttunen, Table of n, a(n) for n = 0..8191
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,-1).
Programs
-
Mathematica
CoefficientList[Series[(1-3x^2-3x^3+x^4)/(1+x^4),{x,0,90}],x] (* or *) Join[{1},LinearRecurrence[{0,0,0,-1},{0,-3,-3,0},90]] (* Harvey P. Dale, Mar 24 2012 *)
-
PARI
Vec((1-3*x^2-3*x^3+x^4)/(1+x^4) + O(x^80)) \\ Jinyuan Wang, Mar 22 2020
-
Scheme
(define (A109247 n) (case n ((0) 1) ((1 4) 0) ((2 3) -3) (else (- (A109247 (- n 4)))))) ;; (After Harvey P. Dale's Mar 24 2012 recurrence) - Antti Karttunen, Aug 12 2017
Formula
a(0)=1, a(1)=0, a(2)=-3, a(3)=-3, a(4)=0, a(n)=-a(n-4) - Harvey P. Dale, Mar 24 2012
For n > 0, a(n) = -3 * A132380(n). - Antti Karttunen, Aug 12 2017
Comments