A109265 Row sums of Riordan array (1-x-x^2,x(1-x)).
1, 0, -2, -2, 0, 2, 2, 0, -2, -2, 0, 2, 2, 0, -2, -2, 0, 2, 2, 0, -2, -2, 0, 2, 2, 0, -2, -2, 0, 2, 2, 0, -2, -2, 0, 2, 2, 0, -2, -2, 0, 2, 2, 0, -2, -2, 0, 2, 2, 0, -2, -2, 0, 2, 2, 0, -2, -2, 0, 2, 2, 0, -2, -2, 0, 2, 2, 0, -2, -2, 0, 2, 2, 0, -2, -2, 0, 2, 2, 0, -2, -2, 0
Offset: 0
Examples
G.f. = 1 - 2*x^2 - 2*x^3 + 2*x^5 + 2*x^6 - 2*x^8 - 2*x^9 + 2*x^11 + 2*x^12 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..2500
- Index entries for linear recurrences with constant coefficients, signature (1,-1).
Programs
-
Magma
m:=25; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x-x^2)/(1-x+x^2))); // G. C. Greubel, Aug 04 2018 -
Mathematica
CoefficientList[Series[(1-x-x^2)/(1-x+x^2), {x, 0, 60}], x] (* G. C. Greubel, Aug 04 2018 *) LinearRecurrence[{1,-1},{1,0,-2},120] (* Harvey P. Dale, Apr 08 2019 *)
-
PARI
{a(n) = n+=2; if( n<3, n==2, 2 * (n%3>0) * (-1)^(n\3))}; /* Michael Somos, Apr 15 2015 */
Formula
G.f.: (1-x-x^2)/(1-x+x^2).
a(n) = -a(n+3) if n>0. - Michael Somos, Apr 15 2015
a(n) = A257076(n+1). - Michael Somos, Apr 15 2015
Convolution inverse of A006355. - Michael Somos, Apr 15 2015