A109306 Numbers k such that k^2 + (k-1)^2 and k^2 + (k+1)^2 are both primes.
2, 5, 25, 30, 35, 70, 85, 100, 110, 225, 230, 260, 285, 290, 320, 390, 410, 475, 490, 495, 515, 590, 680, 695, 710, 750, 760, 845, 950, 1080, 1100, 1135, 1175, 1190, 1195, 1270, 1295, 1305, 1330, 1365, 1410, 1475, 1715, 1750, 1785, 1845, 1855, 1925, 2015, 2060
Offset: 1
Keywords
Examples
25 is a term because 25^2 + 24^2 = 1201 and 25^2 + 26^2 = 1301 are both primes.
Links
- Daniel Starodubtsev, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Range[2, 10000], PrimeQ[ #^2+(#+1)^2]&&PrimeQ[ #^2+(#-1)^2]&]
-
PARI
for(k=1,2060,my(j=2*k^2+1);if(isprime(j-2*k)&&isprime(j+2*k),print1(k,", "))) \\ Hugo Pfoertner, Dec 07 2019
-
Python
from sympy import isprime def aupto(limit): alst, is2 = [], False for k in range(1, limit+1): is1, is2 = is2, isprime(k**2 + (k+1)**2) if is1 and is2: alst.append(k) return alst print(aupto(2060)) # Michael S. Branicky, Apr 25 2021
Formula
a(n)^2 = A075577(n). - David A. Corneth, Apr 25 2021
Extensions
Definition corrected by Walter Kehowski, Jul 04 2005
Comments