cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A109399 Numbers with at least two 3s in their prime signature.

Original entry on oeis.org

216, 1000, 1080, 1512, 2376, 2744, 2808, 3000, 3375, 3672, 4104, 4968, 5400, 6264, 6696, 6750, 7000, 7560, 7992, 8232, 8856, 9000, 9261, 9288, 10152, 10584, 10648, 11000, 11448, 11880, 12744, 13000, 13176, 13500, 13720, 14040, 14472, 15336, 15768, 16632, 17000, 17064, 17576, 17928, 18360, 18522, 19000, 19224, 19656, 20520, 20952, 21000, 21816, 22248, 23000, 23112, 23544, 23625, 24408, 24696, 24840, 25704, 26136, 27000
Offset: 1

Views

Author

Keywords

Comments

In other words, if the canonical prime factorization of a term into prime powers is Product p(i)^e(i), then e(i) = 3 for at least two values of i.
Does not include all numbers with at least two unitary prime power divisors that are cubes (see example section).
The asymptotic density of this sequence is 1 - (1 + Sum_{p prime} ((p-1)/(p^4-p+1))) * Product_{p prime} (1-1/p^3+1/p^4) = 0.0024593812036570543518... . - Amiram Eldar, Jul 22 2024

Examples

			216 = 2^3*3^3, 1000 = 2^3*5^3, 1080 = 2^3*3^3*5, ...
On the other hand, 1728 = 2^6*3^3, 8000 = 2^6*5^3 and 21952 = 2^6*7^3 are not in the sequence.
		

Crossrefs

A176359 is a subsequence.

Programs

  • Mathematica
    f[n_]:=Count[Last/@FactorInteger[n],3]>1; Select[Range[8!],f]
  • PARI
    is(n)=#select(e->e==3, factor(n)[,2])>1 \\ Charles R Greathouse IV, Oct 19 2015

Extensions

Edited by Matthew Vandermast, Dec 07 2010