cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A176297 Numbers with at least one 3 in their prime signature.

Original entry on oeis.org

8, 24, 27, 40, 54, 56, 72, 88, 104, 108, 120, 125, 135, 136, 152, 168, 184, 189, 200, 216, 232, 248, 250, 264, 270, 280, 296, 297, 312, 328, 343, 344, 351, 360, 375, 376, 378, 392, 408, 424, 432, 440, 456, 459, 472, 488, 500, 504, 513, 520, 536, 540, 552, 568, 584, 594, 600, 616, 621, 632, 648, 664, 675, 680, 686, 696, 702, 712
Offset: 1

Views

Author

Keywords

Comments

That is, if n = p1^e1 p2^e2 ... pr^er for distinct primes p1, p2,..., pr, then one of the exponents must be 3 for n to be in this sequence.
The asymptotic density of this sequence is 1 - Product_{p prime} (1 - 1/p^3 + 1/p^4) = 0.0952910730... - Amiram Eldar, Nov 14 2020

Examples

			8=2^3, 24=2^3*3, 27=3^3, 40=2^3*5, ...
		

Crossrefs

Programs

  • Maple
    filter:= proc(x) local F; F:= map(t->t[2],ifactors(x)[2]);has(F,3) end proc:
    select(filter, [$1..1000]); # Robert Israel, Jan 11 2015
    # alternative:
    isA176297 := proc(n)
        local p;
        for p in ifactors(n)[2] do
            if op(2,p) = 3 then
                return true;
            end if;
        end do:
        false ;
    end proc: # R. J. Mathar, Dec 08 2015
  • Mathematica
    f[n_]:=MemberQ[Last/@FactorInteger[n],3]; Select[Range[6!],f]
  • PARI
    isok(n) = vecsearch(vecsort(factor(n)[,2]), 3); \\ Michel Marcus, Jan 11 2015
    
  • Python
    from sympy import factorint
    def ok(n): return 3 in [e for e in factorint(n).values()]
    print(list(filter(ok, range(713)))) # Michael S. Branicky, Aug 24 2021

A386801 Numbers that have exactly two exponents in their prime factorization that are equal to 3.

Original entry on oeis.org

216, 1000, 1080, 1512, 2376, 2744, 2808, 3000, 3375, 3672, 4104, 4968, 5400, 6264, 6696, 6750, 7000, 7560, 7992, 8232, 8856, 9000, 9261, 9288, 10152, 10584, 10648, 11000, 11448, 11880, 12744, 13000, 13176, 13500, 13720, 14040, 14472, 15336, 15768, 16632, 17000
Offset: 1

Views

Author

Amiram Eldar, Aug 03 2025

Keywords

Comments

Subsequence of A109399 and first differs from it at n = 64: A109399(64) = 27000 = 2^3 * 3^3 * 5^3 is not a term of this sequence.
Numbers k such that A295883(k) = 2.
The asymptotic density of this sequence is Product_{p primes} (1 - 1/p^3 + 1/p^4) * ((Sum_{p prime} (p-1)/(p^4 - p + 1))^2 - Sum_{p prime} ((p-1)^2/(p^4 - p + 1)^2)) / 2 = 0.0024403883082851652103... (Elma and Martin, 2024).

Crossrefs

Subsequence of A109399.
Cf. A295883.
Numbers that have exactly two exponents in their prime factorization that are equal to k: A386797 (k=2), this sequence (k=3), A386805 (k=4), A386809 (k=5).
Numbers that have exactly m exponents in their prime factorization that are equal to 3: A386799 (m=0), A386800 (m=1), this sequence (m=2), A386802 (m=3).

Programs

  • Mathematica
    f[p_, e_] := If[e == 3, 1, 0]; s[1] = 0; s[n_] := Plus @@ f @@@ FactorInteger[n]; Select[Range[17000], s[#] == 2 &]
  • PARI
    isok(k) = vecsum(apply(x -> if(x == 3, 1, 0), factor(k)[, 2])) == 2;

A176359 Numbers with at least three 3s in their prime signature.

Original entry on oeis.org

27000, 74088, 189000, 287496, 297000, 343000, 351000, 370440, 459000, 474552, 513000, 621000, 783000, 814968, 837000, 963144, 999000, 1029000, 1061208, 1107000, 1157625, 1161000, 1259496, 1269000, 1323000, 1331000, 1407672, 1431000, 1437480, 1481544, 1593000, 1647000, 1704024, 1809000, 1852200, 1917000, 1971000, 2012472, 2079000, 2133000, 2148552
Offset: 1

Views

Author

Keywords

Comments

In other words, if the canonical prime factorization of a term into prime powers is Product p(i)^e(i), then e(i) = 3 for at least three values of i.
The asymptotic density of this sequence is 1 - (1 + s(1) + s(1)^2/2 - s(2)/2) * Product_{p prime} (1-1/p^3+1/p^4) = 0.000018992895371889141564..., where s(k) = Sum_{p prime} ((p-1)/(p^4-p+1))^k. - Amiram Eldar, Jul 22 2024

Examples

			27000 is a term since 27000 = 2^3 * 3^3 * 5^3.
74088 is a term since 74088 = 2^3 * 5^3 * 7^3.
		

Crossrefs

Subsequence of A109399.

Programs

  • Mathematica
    f[n_]:=Count[Last/@FactorInteger[n],3]>2; Select[Range[10!],f]
  • PARI
    is(n) = #select(x -> x == 3, factor(n)[, 2]) > 2; \\ Amiram Eldar, Jul 22 2024

Extensions

Edited by Matthew Vandermast, Dec 09 2010
Showing 1-3 of 3 results.