cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A176297 Numbers with at least one 3 in their prime signature.

Original entry on oeis.org

8, 24, 27, 40, 54, 56, 72, 88, 104, 108, 120, 125, 135, 136, 152, 168, 184, 189, 200, 216, 232, 248, 250, 264, 270, 280, 296, 297, 312, 328, 343, 344, 351, 360, 375, 376, 378, 392, 408, 424, 432, 440, 456, 459, 472, 488, 500, 504, 513, 520, 536, 540, 552, 568, 584, 594, 600, 616, 621, 632, 648, 664, 675, 680, 686, 696, 702, 712
Offset: 1

Views

Author

Keywords

Comments

That is, if n = p1^e1 p2^e2 ... pr^er for distinct primes p1, p2,..., pr, then one of the exponents must be 3 for n to be in this sequence.
The asymptotic density of this sequence is 1 - Product_{p prime} (1 - 1/p^3 + 1/p^4) = 0.0952910730... - Amiram Eldar, Nov 14 2020

Examples

			8=2^3, 24=2^3*3, 27=3^3, 40=2^3*5, ...
		

Crossrefs

Programs

  • Maple
    filter:= proc(x) local F; F:= map(t->t[2],ifactors(x)[2]);has(F,3) end proc:
    select(filter, [$1..1000]); # Robert Israel, Jan 11 2015
    # alternative:
    isA176297 := proc(n)
        local p;
        for p in ifactors(n)[2] do
            if op(2,p) = 3 then
                return true;
            end if;
        end do:
        false ;
    end proc: # R. J. Mathar, Dec 08 2015
  • Mathematica
    f[n_]:=MemberQ[Last/@FactorInteger[n],3]; Select[Range[6!],f]
  • PARI
    isok(n) = vecsearch(vecsort(factor(n)[,2]), 3); \\ Michel Marcus, Jan 11 2015
    
  • Python
    from sympy import factorint
    def ok(n): return 3 in [e for e in factorint(n).values()]
    print(list(filter(ok, range(713)))) # Michael S. Branicky, Aug 24 2021

A386802 Numbers that have exactly three exponents in their prime factorization that are equal to 3.

Original entry on oeis.org

27000, 74088, 189000, 287496, 297000, 343000, 351000, 370440, 459000, 474552, 513000, 621000, 783000, 814968, 837000, 963144, 999000, 1029000, 1061208, 1107000, 1157625, 1161000, 1259496, 1269000, 1323000, 1331000, 1407672, 1431000, 1437480, 1481544, 1593000, 1647000
Offset: 1

Views

Author

Amiram Eldar, Aug 03 2025

Keywords

Comments

Subsequence of A176359 and first differs from it at n = 173: A176359(173) = 9261000 = 2^3 * 3^3 * 5^3 * 7^3 is not a term of this sequence.
Numbers k such that A295883(k) = 3.
The asymptotic density of this sequence is Product_{p primes} (1 - 1/p^3 + 1/p^4) * (s(1)^3 + 3*s(1)*s(2) + 2*s(3)) / 6 = 0.000018940548516752487509..., where s(m) = (-1)^(m-1) * Sum_{p prime} (1/(p^4/(p-1)-1))^m (Elma and Martin, 2024).

Crossrefs

Subsequence of A176359.
Cf. A295883.
Numbers that have exactly three exponents in their prime factorization that are equal to k: A386798 (k=2), this sequence (k=3), A386806 (k=4), A386810 (k=5).
Numbers that have exactly m exponents in their prime factorization that are equal to 3: A386799 (m=0), A386800 (m=1), A386801 (m=2), this sequence (m=3).

Programs

  • Mathematica
    f[p_, e_] := If[e == 3, 1, 0]; s[1] = 0; s[n_] := Plus @@ f @@@ FactorInteger[n]; Select[Range[2*10^6], s[#] == 3 &]
  • PARI
    isok(k) = vecsum(apply(x -> if(x == 3, 1, 0), factor(k)[, 2])) == 3;

A109399 Numbers with at least two 3s in their prime signature.

Original entry on oeis.org

216, 1000, 1080, 1512, 2376, 2744, 2808, 3000, 3375, 3672, 4104, 4968, 5400, 6264, 6696, 6750, 7000, 7560, 7992, 8232, 8856, 9000, 9261, 9288, 10152, 10584, 10648, 11000, 11448, 11880, 12744, 13000, 13176, 13500, 13720, 14040, 14472, 15336, 15768, 16632, 17000, 17064, 17576, 17928, 18360, 18522, 19000, 19224, 19656, 20520, 20952, 21000, 21816, 22248, 23000, 23112, 23544, 23625, 24408, 24696, 24840, 25704, 26136, 27000
Offset: 1

Views

Author

Keywords

Comments

In other words, if the canonical prime factorization of a term into prime powers is Product p(i)^e(i), then e(i) = 3 for at least two values of i.
Does not include all numbers with at least two unitary prime power divisors that are cubes (see example section).
The asymptotic density of this sequence is 1 - (1 + Sum_{p prime} ((p-1)/(p^4-p+1))) * Product_{p prime} (1-1/p^3+1/p^4) = 0.0024593812036570543518... . - Amiram Eldar, Jul 22 2024

Examples

			216 = 2^3*3^3, 1000 = 2^3*5^3, 1080 = 2^3*3^3*5, ...
On the other hand, 1728 = 2^6*3^3, 8000 = 2^6*5^3 and 21952 = 2^6*7^3 are not in the sequence.
		

Crossrefs

A176359 is a subsequence.

Programs

  • Mathematica
    f[n_]:=Count[Last/@FactorInteger[n],3]>1; Select[Range[8!],f]
  • PARI
    is(n)=#select(e->e==3, factor(n)[,2])>1 \\ Charles R Greathouse IV, Oct 19 2015

Extensions

Edited by Matthew Vandermast, Dec 07 2010
Showing 1-3 of 3 results.