A109411 Partition the sequence of positive integers into minimal groups so that sum of terms in each group is a semiprime; sequence gives sizes of the groups.
3, 1, 4, 1, 1, 5, 2, 3, 1, 1, 13, 3, 1, 3, 2, 2, 2, 1, 4, 6, 2, 1, 6, 1, 2, 2, 1, 14, 4, 1, 1, 1, 3, 5, 2, 1, 2, 2, 1, 3, 1, 10, 2, 7, 5, 4, 2, 1, 2, 2, 2, 6, 1, 2, 3, 5, 2, 3, 4, 5, 6, 2, 3, 2, 2, 4, 1, 14, 1, 1, 4, 7, 5, 2, 3, 6, 1, 2, 2, 2, 1, 2, 2, 1, 4, 2, 2, 2, 3, 17, 2, 3, 1, 10, 3, 1, 3, 6, 1, 4, 2, 1
Offset: 1
Keywords
Examples
The partition begins {1-3},{4},{5-8},{9},{10},{11-15},{16-17},{18-20},{21},{22},{23-35}, {36-38},{39},{40-42},{43-44},{45-46},{47-48},{49},{50-53}, {54-59},{60-61},{62},{63-68},{69},{70-71},{72-73},{74},{75-88}, {89-92},{93},{94},{95},{96-98},{99-103},{104-105}...
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..20000
Crossrefs
Cf. A133837.
Programs
-
Maple
s:= proc(n) option remember; `if`(n<1, 0, a(n)+s(n-1)) end: a:= proc(n) option remember; local i,k,t; k:=0; t:=s(n-1); for i from 1+t do k:=k+i; if numtheory[bigomega](k)=2 then return i-t fi od end: seq(a(n), n=1..100); # Alois P. Heinz, Nov 26 2015
-
Mathematica
s={{1, 2, 3}};a=4;Do[Do[If[Plus@@Last/@FactorInteger[(a+x)(x-a+1)/2]==2, AppendTo[s, Range[a, x]];(*Print[Range[a, x]];*)a=x+1;Break[]], {x, a, 20000}], {k, 1, 1000}];s
Comments