A109500 Number of closed walks of length n on the complete graph on 6 nodes from a given node.
1, 0, 5, 20, 105, 520, 2605, 13020, 65105, 325520, 1627605, 8138020, 40690105, 203450520, 1017252605, 5086263020, 25431315105, 127156575520, 635782877605, 3178914388020, 15894571940105, 79472859700520
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Ji Young Choi, A Generalization of Collatz Functions and Jacobsthal Numbers, J. Int. Seq., Vol. 21 (2018), Article 18.5.4.
- Christopher R. Kitching, Henri Kauhanen, Jordan Abbott, Deepthi Gopal, Ricardo Bermúdez-Otero, and Tobias Galla, Estimating transmission noise on networks from stationary local order, arXiv:2405.12023 [cond-mat.stat-mech], 2024. See p. 48.
- Index entries for linear recurrences with constant coefficients, signature (4,5).
Crossrefs
Programs
-
Magma
[(5^n + 5*(-1)^n)/6: n in [0..30]]; // G. C. Greubel, Dec 30 2017
-
Mathematica
k=0;lst={k};Do[k=5^n-k;AppendTo[lst, k], {n, 1, 5!}];lst (* Vladimir Joseph Stephan Orlovsky, Dec 11 2008 *) CoefficientList[Series[(1 - 4*x)/(1 - 4*x - 5*x^2), {x, 0, 50}], x] (* or *) Table[(5^n + 5*(-1)^n)/6, {n,0,30}] (* G. C. Greubel, Dec 30 2017 *)
-
PARI
for(n=0, 30, print1((5^n + 5*(-1)^n)/6, ", ")) \\ G. C. Greubel, Dec 30 2017
Formula
G.f.: (1 - 4*x)/(1 - 4*x - 5*x^2).
a(n) = (5^n + 5*(-1)^n)/6.
a(n) = 5^(n-1) - a(n-1), a(0) = 1. - Jon E. Schoenfield, Feb 08 2015
Extensions
Corrected by Franklin T. Adams-Watters, Sep 18 2006
Edited by Jon E. Schoenfield, Feb 08 2015