cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A109502 Array read by antidiagonals: T(m,n) is the number of closed walks of length n on the complete graph on m nodes, m >= 1, n >= 0.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 2, 0, 0, 1, 0, 3, 2, 1, 0, 1, 0, 4, 6, 6, 0, 0, 1, 0, 5, 12, 21, 10, 1, 0, 1, 0, 6, 20, 52, 60, 22, 0, 0, 1, 0, 7, 30, 105, 204, 183, 42, 1, 0, 1, 0, 8, 42, 186, 520, 820, 546, 86, 0, 0, 1, 0, 9, 56, 301, 1110, 2605, 3276, 1641, 170, 1, 0
Offset: 1

Views

Author

Mitch Harris, Jun 30 2005

Keywords

Examples

			Array begins:
  m\n| 0  1  2  3   4    5     6      7       8        9        10
  ---+------------------------------------------------------------
   1 | 1  0  0  0   0    0     0      0       0        0         0
   2 | 1  0  1  0   1    0     1      0       1        0         1
   3 | 1  0  2  2   6   10    22     42      86      170       342
   4 | 1  0  3  6  21   60   183    546    1641     4920     14763
   5 | 1  0  4 12  52  204   820   3276   13108    52428    209716
   6 | 1  0  5 20 105  520  2605  13020   65105   325520   1627605
   7 | 1  0  6 30 186 1110  6666  39990  239946  1439670   8638026
   8 | 1  0  7 42 301 2100 14707 102942  720601  5044200  35309407
   9 | 1  0  8 56 456 3640 29128 233016 1864136 14913080 119304648
  10 | 1  0  9 72 657 5904 53145 478296 4304673 38742048 348678441
		

Crossrefs

Programs

  • Maple
    T := proc(m, n); ((m-1)^n + (m-1)*(-1)^n)/m end:
    seq(print(seq(T(m, n), n = 0..10)), m = 1..10); # Peter Bala, May 30 2024

Formula

T(m,n) = ((m-1)^n + (m-1)(-1)^n)/m.
G.f.: T(m, n) = [z^n](1 - (m-2)z)/(1 - (m-2)z - (m-1)z^2).
From Peter Bala, May 29 2024: (Start)
Binomial transform of the m-th row: Sum_{k = 0..n} binomial(n, k)*T(m, k) = m^(n-1) for n >= 1.
Let R(m, x) denote the g.f. of the m-th row of the square array. Then R(m_1, x) o R(m_2, x) = R(m_1*m_2, x), where o denotes the black diamond product of power series as defined by Dukes and White. Cf. A062160.
T(m_1*m_2, n) = Sum_{k = 0..n} Sum_{i = k..n} binomial(n, k)*binomial(n-k, i-k)*T(m_1, i)*T(m_2, n-k). (End)

Extensions

Corrected by Franklin T. Adams-Watters, Sep 18 2006