A109543 a(n) = a(n-1) + a(n-3) + a(n-5), with a(1..5) = 1.
1, 1, 1, 1, 1, 3, 5, 7, 11, 17, 27, 43, 67, 105, 165, 259, 407, 639, 1003, 1575, 2473, 3883, 6097, 9573, 15031, 23601, 37057, 58185, 91359, 143447, 225233, 353649, 555281, 871873, 1368969, 2149483, 3375005, 5299255, 8320611, 13064585, 20513323, 32208939
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Peter Borwein and Kevin G. Hare, Some computations on Pisot and Salem numbers, 2000, table 1, p. 7.
- Peter Borwein and Kevin G. Hare, Some computations on the spectra of Pisot and Salem numbers, Math. Comp. 71 (2002), 767-780.
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,0,1).
Programs
-
Magma
m:=50; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!((1 - x^3-x^4)/(1-x-x^3-x^5))); // G. C. Greubel, Nov 03 2018 -
Mathematica
LinearRecurrence[{1, 0, 1, 0, 1}, {1, 1, 1, 1, 1}, 60] (* Vladimir Joseph Stephan Orlovsky, Feb 18 2012 *)
-
PARI
Vec((1 - x^3 - x^4) / (1 - x - x^3 - x^5) + O(x^50)) \\ Colin Barker, Dec 17 2017
-
PARI
my(p=Mod('x,'x^5-'x^4-'x^2-1)); a(n) = vecsum(Vec(lift(p^n))); \\ Kevin Ryde, Jan 15 2021
Formula
G.f.: (1 - x^3 - x^4) / (1 - x - x^3 - x^5). - Colin Barker, Dec 17 2017