A109702 Number of partitions of n into parts each equal to 5 mod 6.
1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 2, 1, 0, 1, 1, 2, 2, 1, 1, 1, 2, 3, 3, 2, 1, 2, 3, 4, 4, 2, 2, 3, 5, 6, 5, 3, 3, 5, 7, 8, 6, 4, 5, 8, 10, 10, 8, 6, 8, 11, 13, 13, 10, 9, 12, 15, 18, 17, 14, 13, 16, 21, 23, 22, 18, 18, 23, 28, 31, 28, 24, 25, 31, 38, 39, 36, 32, 34
Offset: 0
Keywords
Examples
a(40)=4 since 40 = 35+5 = 29+11 = 23+17 = 5+5+5+5+5+5+5+5.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Maple
g:=1/product(1-x^(5+6*j),j=0..20): gser:=series(g,x=0,92): seq(coeff(gser,x,n),n=0..89); # Emeric Deutsch, Apr 14 2006
-
Mathematica
nmax=100; CoefficientList[Series[Product[1/(1-x^(6*k+5)),{k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 27 2015 *) Table[Count[IntegerPartitions[n],?(Union[Mod[#,6]]=={5}&)],{n,0,90}] (* _Harvey P. Dale, Mar 08 2022 *)
Formula
G.f.: 1/product(1-x^(5+6j),j=0..infinity). - Emeric Deutsch, Apr 14 2006
a(n) ~ Gamma(5/6) * exp(Pi*sqrt(n)/3) / (4 * sqrt(3) * Pi^(1/6) * n^(11/12)) * (1 - (55/(24*Pi) + Pi/144) / sqrt(n)). - Vaclav Kotesovec, Feb 27 2015, extended Jan 24 2017
a(n) = (1/n)*Sum_{k=1..n} A284104(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 20 2017
Euler transform of period 6 sequence [ 0, 0, 0, 0, 1, 0, ...]. - Kevin T. Acres, Apr 28 2018
Extensions
Changed offset to 0 and added a(0)=1 by Vaclav Kotesovec, Feb 27 2015