A109705 Number of partitions of n into parts each equal to 3 mod 7.
1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 3, 1, 2, 4, 2, 2, 4, 4, 2, 4, 5, 3, 4, 6, 5, 4, 6, 7, 5, 6, 8, 8, 6, 9, 11, 7, 9, 13, 10, 9, 14, 14, 10, 15, 17, 14, 15, 19, 19, 16, 20, 24, 20, 21, 27, 27, 22, 29, 33, 27, 30, 38, 35, 32, 41, 44, 37, 43, 51, 47, 45
Offset: 0
Keywords
Examples
a(20)=2 because we have 20=17+3=10+10.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000
Programs
-
Maple
g:=1/product(1-x^(3+7*j),j=0..20): gser:=series(g,x=0,90): seq(coeff(gser,x,n),n=0..87); # Emeric Deutsch, Apr 14 2006
-
Mathematica
nmax=100; CoefficientList[Series[Product[1/(1-x^(7*k+3)),{k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 27 2015 *)
Formula
G.f.: 1/product(1-x^(3+7j), j=0..infinity). - Emeric Deutsch, Apr 14 2006
a(n) ~ Gamma(3/7) * exp(Pi*sqrt(2*n/21)) / (2^(12/7) * 3^(3/14) * 7^(2/7) * Pi^(4/7) * n^(5/7)) * (1 + (23*Pi/(168*sqrt(42)) - 15*sqrt(3/14)/(7*Pi)) / sqrt(n)). - Vaclav Kotesovec, Feb 27 2015, extended Jan 24 2017
a(n) = (1/n)*Sum_{k=1..n} A284444(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 28 2017
Extensions
Changed offset to 0 and added a(0)=1 by Vaclav Kotesovec, Feb 27 2015