cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A284444 a(n) = Sum_{d|n, d == 3 (mod 7)} d.

Original entry on oeis.org

0, 0, 3, 0, 0, 3, 0, 0, 3, 10, 0, 3, 0, 0, 3, 0, 17, 3, 0, 10, 3, 0, 0, 27, 0, 0, 3, 0, 0, 13, 31, 0, 3, 17, 0, 3, 0, 38, 3, 10, 0, 3, 0, 0, 48, 0, 0, 27, 0, 10, 20, 52, 0, 3, 0, 0, 3, 0, 59, 13, 0, 31, 3, 0, 0, 69, 0, 17, 3, 10, 0, 27, 73, 0, 3, 38, 0, 3, 0, 90, 3
Offset: 1

Views

Author

Seiichi Manyama, Mar 27 2017

Keywords

Crossrefs

Cf. A109705.
Cf. Sum_{d|n, d == k (mod 7)} d: A284099 (k=1), A284443 (k=2), this sequence (k=3), A284445 (k=4), A284446 (k=5), A284105 (k=6).

Programs

  • Mathematica
    Table[Sum[If[Mod[d, 7] == 3, d, 0], {d, Divisors[n]}], {n, 80}] (* Indranil Ghosh, Mar 27 2017 *)
  • PARI
    a(n) = sumdiv(n, d, d*((d % 7) == 3)); \\ Amiram Eldar, Nov 26 2023

Formula

G.f.: Sum_{k>=0} (7*k + 3)*x^(7*k+3)/(1 - x^(7*k+3)). - Ilya Gutkovskiy, Mar 28 2017
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/84 = 0.117495... . - Amiram Eldar, Nov 26 2023

A281457 Expansion of Product_{k>=1} (1 + x^(7*k-4)).

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 2, 0, 0, 1, 1, 0, 0, 2, 0, 0, 1, 1, 0, 0, 3, 0, 0, 2, 1, 0, 0, 3, 0, 0, 3, 1, 0, 1, 4, 0, 0, 4, 1, 0, 1, 4, 0, 0, 5, 1, 0, 2, 5, 0, 0, 7, 1, 0, 3, 5, 0, 0, 8, 1, 0, 5, 6, 0, 1
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 22 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1 + x^(7*k - 4)), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 100; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 0; Do[If[Mod[k, 7] == 3, Do[poly[[j + 1]] += poly[[j - k + 1]], {j, nmax, k, -1}]; ], {k, 2, nmax}]; poly

Formula

a(n) ~ exp(sqrt(n/21)*Pi) / (2^(10/7)*21^(1/4)*n^(3/4)) * (1 - (3*sqrt(21)/(8*Pi) + 23*Pi/(336*sqrt(21))) / sqrt(n)). - Vaclav Kotesovec, Jan 22 2017, extended Jan 24 2017

A035435 Number of partitions of n into parts 7k+3 or 7k+4.

Original entry on oeis.org

1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 5, 4, 6, 7, 7, 7, 10, 10, 10, 12, 15, 14, 16, 19, 21, 21, 25, 28, 30, 31, 37, 40, 42, 46, 54, 55, 60, 68, 74, 76, 87, 95, 101, 108, 122, 130, 139, 151, 168, 176, 190, 209, 227, 237, 261, 284, 302, 321, 355, 378, 402, 434
Offset: 0

Views

Author

Keywords

Comments

Convolution of A109706 and A109705. - Vaclav Kotesovec, Jan 21 2017

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[1/((1 - x^(7k+3))*(1 - x^(7k+4))), {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 26 2015 *)

Formula

a(n) ~ exp(2*Pi*sqrt(n/21)) / (4 * 21^(1/4) * cos(Pi/14) * n^(3/4)) * (1 + (23*Pi/(84*sqrt(21)) - 3*sqrt(21)/(16*Pi)) / sqrt(n)). - Vaclav Kotesovec, Aug 26 2015, extended Jan 24 2017

Extensions

Prepended a(0)=1 from Vaclav Kotesovec, Jan 23 2017
Showing 1-3 of 3 results.