cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A291945 Powers of 1111.

Original entry on oeis.org

1, 1111, 1234321, 1371330631, 1523548331041, 1692662195786551, 1880547699518858161, 2089288494165451416871, 2321199517017816524143681, 2578852663406794158323629591, 2865105309044948309897552475601, 3183131998348937572296180800392711, 3536459650165669642821056869236301921, 3929006671334058973174194181721531434231
Offset: 0

Views

Author

Seiichi Manyama, Mar 09 2018

Keywords

Crossrefs

Powers of ((10^k - 1)/9): A000012 (k=1), A001020 (k=2), A225374 (k=3), this sequence (k=4), A291946 (k=5), A109716 (k=6).
Cf. A096884.

Programs

Formula

a(n) = 1111^n.
G.f.: 1/(1 - 1111*x).
From Elmo R. Oliveira, Aug 16 2024: (Start)
E.g.f.: exp(1111*x).
a(n) = 1111*a(n-1) for n > 0.
a(n) = A001020(n)*A096884(n). (End)

A291946 Powers of 11111.

Original entry on oeis.org

1, 11111, 123454321, 1371700960631, 15240969373571041, 169342410709747836551, 1881563525396008211918161, 20906052330675047242622686871, 232287147446130449912780673823681, 2580942495273955428980906066854919591, 28676852064988918771406847308825011575601, 318628503294091876469101480448354703616502711
Offset: 0

Views

Author

Seiichi Manyama, Mar 09 2018

Keywords

Crossrefs

Powers of ((10^k - 1)/9): A000012 (k=1), A001020 (k=2), A225374 (k=3), A291945 (k=4), this sequence (k=5), A109716 (k=6).
Cf. A009985.

Programs

  • PARI
    my(x='x+O('x^99)); Vec(1/(1-11111*x)) \\ Altug Alkan, Mar 10 2018

Formula

a(n) = 11111^n.
G.f.: 1/(1 - 11111*x).
From Elmo R. Oliveira, Aug 26 2024: (Start)
E.g.f.: exp(11111*x).
a(n) = 11111*a(n-1) for n > 0.
a(n) = 271^n * A009985(n). (End)
Showing 1-2 of 2 results.