cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A109801 Cumulative sum of squares of primes indexed by squares.

Original entry on oeis.org

4, 53, 582, 3391, 12800, 35601, 87130, 183851, 359412, 652093, 1089014, 1772943, 2791024, 4214273, 6250602, 8871763, 12402404, 16994853, 22933822, 30446903, 39951792, 51930313, 66393122, 84125643, 105627412, 131140013, 161599374
Offset: 1

Views

Author

Jonathan Vos Post, Aug 15 2005

Keywords

Comments

Related to Prime(1^2) + prime(2^2) + ... + prime(n^2) (A109724).

Examples

			a(1) = 4 because (prime[1^2])^2 = (prime[1])^2 = 2^2.
a(2) = 53 because (prime[1^2])^2 + (prime[2^2])^2 = 2^2 + 7^2 = 4 + 49 = 53 (which is prime).
a(3) = 582 because (prime[1^2])^2 + (prime[2^2])^2 + (prime[3^2])^2 = 2^2 + 7^2 + 23^2 = 582.
a(4) = 582 because (prime[1^2])^2 + (prime[2^2])^2 + (prime[3^2])^2 + (prime[4^2])^2 = 2^2 + 7^2 + 23^2 + 53^2 = 3391 (which is prime).
a(32) = a(31) + (prime[32^2])^2 = 345995122 + 8161^2 = 412597043 (which is prime).
a(34) = a(33) + (prime[34^2])^2 = 488932212 + 9341^2 = 576186493 (which is prime).
		

Crossrefs

Programs

  • Mathematica
    Accumulate[Prime[Range[30]^2]^2] (* Harvey P. Dale, Mar 28 2012 *)

Formula

(Prime[1^2])^2 + (prime[2^2])^2 + ... + (prime[n^2])^2. a(n+1) = a(n) + (A011757(n+1))^2.