A109801 Cumulative sum of squares of primes indexed by squares.
4, 53, 582, 3391, 12800, 35601, 87130, 183851, 359412, 652093, 1089014, 1772943, 2791024, 4214273, 6250602, 8871763, 12402404, 16994853, 22933822, 30446903, 39951792, 51930313, 66393122, 84125643, 105627412, 131140013, 161599374
Offset: 1
Keywords
Examples
a(1) = 4 because (prime[1^2])^2 = (prime[1])^2 = 2^2. a(2) = 53 because (prime[1^2])^2 + (prime[2^2])^2 = 2^2 + 7^2 = 4 + 49 = 53 (which is prime). a(3) = 582 because (prime[1^2])^2 + (prime[2^2])^2 + (prime[3^2])^2 = 2^2 + 7^2 + 23^2 = 582. a(4) = 582 because (prime[1^2])^2 + (prime[2^2])^2 + (prime[3^2])^2 + (prime[4^2])^2 = 2^2 + 7^2 + 23^2 + 53^2 = 3391 (which is prime). a(32) = a(31) + (prime[32^2])^2 = 345995122 + 8161^2 = 412597043 (which is prime). a(34) = a(33) + (prime[34^2])^2 = 488932212 + 9341^2 = 576186493 (which is prime).
Programs
-
Mathematica
Accumulate[Prime[Range[30]^2]^2] (* Harvey P. Dale, Mar 28 2012 *)
Formula
(Prime[1^2])^2 + (prime[2^2])^2 + ... + (prime[n^2])^2. a(n+1) = a(n) + (A011757(n+1))^2.
Comments